Header

UZH-Logo

Maintenance Infos

Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats


Mayrhofer, Johannes M; Skreb, Vida; von der Behrens, Wolfger; Musall, Simon; Weber, Bruno; Haiss, Florent (2013). Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats. Journal of Neurophysiology, 109(1):273-284.

Abstract

Rats and mice receive a constant bilateral stream of tactile information with their large mystacial vibrissae when navigating in their environment. In a two-alternative forced choice paradigm (2-AFC), head-fixed rats and mice learned to discriminate vibrotactile frequencies applied simultaneously to individual whiskers on the left and right sides of the snout. Mice and rats discriminated 90-Hz pulsatile stimuli from pulsatile stimuli with lower repetition frequencies (10-80 Hz) but with identical kinematic properties in each pulse. Psychometric curves displayed an average perceptual threshold of 50.6-Hz and 53.0-Hz frequency difference corresponding to Weber fractions of 0.56 and 0.58 in mice and rats, respectively. Both species performed >400 trials a day (>200 trials per session, 2 sessions/day), with a peak performance of >90% correct responses. In general, rats and mice trained in the identical task showed comparable psychometric curves. Behavioral readouts, such as reaction times, learning rates, trial omissions, and impulsivity, were also very similar in the two species. Furthermore, whisking of the animals before stimulus presentation reduced task performance. This behavioral paradigm, combined with whisker position tracking, allows precise stimulus control in the 2-AFC task for head-fixed rodents. It is compatible with state-of-the-art neurophysiological recording techniques, such as electrophysiology and two-photon imaging, and therefore represents a valuable framework for neurophysiological investigations of perceptual decision-making.

Abstract

Rats and mice receive a constant bilateral stream of tactile information with their large mystacial vibrissae when navigating in their environment. In a two-alternative forced choice paradigm (2-AFC), head-fixed rats and mice learned to discriminate vibrotactile frequencies applied simultaneously to individual whiskers on the left and right sides of the snout. Mice and rats discriminated 90-Hz pulsatile stimuli from pulsatile stimuli with lower repetition frequencies (10-80 Hz) but with identical kinematic properties in each pulse. Psychometric curves displayed an average perceptual threshold of 50.6-Hz and 53.0-Hz frequency difference corresponding to Weber fractions of 0.56 and 0.58 in mice and rats, respectively. Both species performed >400 trials a day (>200 trials per session, 2 sessions/day), with a peak performance of >90% correct responses. In general, rats and mice trained in the identical task showed comparable psychometric curves. Behavioral readouts, such as reaction times, learning rates, trial omissions, and impulsivity, were also very similar in the two species. Furthermore, whisking of the animals before stimulus presentation reduced task performance. This behavioral paradigm, combined with whisker position tracking, allows precise stimulus control in the 2-AFC task for head-fixed rodents. It is compatible with state-of-the-art neurophysiological recording techniques, such as electrophysiology and two-photon imaging, and therefore represents a valuable framework for neurophysiological investigations of perceptual decision-making.

Statistics

Citations

17 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2013
Deposited On:21 Feb 2014 11:55
Last Modified:05 Apr 2016 17:42
Publisher:American Physiological Society
ISSN:0022-3077
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1152/jn.00488.2012
PubMed ID:23054598

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations