Header

UZH-Logo

Maintenance Infos

Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream


Vogt, Tobias; Hoehn, Eduard; Schneider, Philipp; Freund, Anja; Schirmer, Mario; Cirpka, Olaf A (2010). Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream. Advances in Water Resources, 33(11):1296-1308.

Abstract

A key parameter used in the assessment of bank filtration is the travel time of the infiltrated river water during the passage through groundwater. We analyze time series of electrical conductivity (EC) in the river and adjacent groundwater observation wells to investigate travel times of young hyporheic groundwater in adjoining channelized and restored sections of River Thur in North-East Switzerland. To quantify mixing ratios and mean residence times we perform cross-correlation analysis and non-parametric deconvolution of the EC time series. Measurements of radon-222 in the groundwater samples validate the calculated residence times. A simple relationship between travel time and distance to the river has not been observed. Therefore, we speculate that the lateral position and depth of the thalweg as well as the type of bank stabilization might control the infiltration processes in losing rivers. Diurnal oscillations of EC observed in the river and in nearby observation wells facilitate analyzing the temporal variation of infiltration. The diurnal oscillations are particularly pronounced in low flow situations, while the overall EC signal is dominated by individual high-flow events. Differences in travel times derived from diurnal and overall EC signals thus reflect different infiltration regimes.

Abstract

A key parameter used in the assessment of bank filtration is the travel time of the infiltrated river water during the passage through groundwater. We analyze time series of electrical conductivity (EC) in the river and adjacent groundwater observation wells to investigate travel times of young hyporheic groundwater in adjoining channelized and restored sections of River Thur in North-East Switzerland. To quantify mixing ratios and mean residence times we perform cross-correlation analysis and non-parametric deconvolution of the EC time series. Measurements of radon-222 in the groundwater samples validate the calculated residence times. A simple relationship between travel time and distance to the river has not been observed. Therefore, we speculate that the lateral position and depth of the thalweg as well as the type of bank stabilization might control the infiltration processes in losing rivers. Diurnal oscillations of EC observed in the river and in nearby observation wells facilitate analyzing the temporal variation of infiltration. The diurnal oscillations are particularly pronounced in low flow situations, while the overall EC signal is dominated by individual high-flow events. Differences in travel times derived from diurnal and overall EC signals thus reflect different infiltration regimes.

Statistics

Citations

53 citations in Web of Science®
56 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 04 Mar 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2010
Deposited On:04 Mar 2014 14:14
Last Modified:05 Apr 2016 17:44
Publisher:Elsevier
ISSN:0309-1708
Publisher DOI:https://doi.org/10.1016/j.advwatres.2010.02.007

Download