Expression of genes involved in the embryo-maternal interaction in the early pregnant canine uterus

Kautz, Ewa; Gram, Aykut; Aslan, Selim; Ay, Serhan Serhat; Selcuk, Murat; Kanca, Halit; Koldas, Ece; Akal, Eser; Karakas, Kubra; Findik, Murat; Boos, Alois; Kowalewski, Mariusz Pawel

Abstract: Although there is no acute luteolytic mechanism in the absence of pregnancy in the bitch a precise and well-timed embryo-maternal interaction seems to be required for the initiation and maintenance of gestation. Since only limited information is available about these processes in dogs, here, the uterine expression of possible decidualization markers was investigated during the pre-implantation stage (days 10-12) of pregnancy and in corresponding non-pregnant controls. Additionally, the expression of selected genes associated with blastocyst development and/or implantation was investigated in embryos flushed from the uteri used for this study (unhatched and hatched blastocysts). There was an upregulated expression of prolactin receptor (PRLr) and insulin-like growth factor 2 (IGF2) observed pre-implantation. The expression of PRL and of IGF1 was unaffected, and neither was the expression of progesterone- or estrogen receptor (ER). In contrast, ER-levels were elevated during early pregnancy. Prostaglandin (PG)-system revealed upregulated expression of PGE2-synthase and its receptors, EP2 (PTGER2) and EP4 (PTGER4), and of the PG-transporter. Elevated levels of PGF2-synthase (PGF-S/AKR1C3) mRNA, but not the protein itself, were noted. Expression of prostaglandin-endoperoxide synthase 2 (PTGS2,COX2) remained unaffected. Most of the transcripts were predominantly localized to the uterine epithelial cells, myometrium and, to a lesser extent, to the uterine stroma. PGES mRNA was abundantly expressed in both groups of embryos and appeared higher in the hatched ones. The expression level of IGF2 mRNA appeared higher than that of IGF1 mRNA in hatched embryos. In unhatched embryos IGF1, IGF2 and COX2 mRNA levels were below the detection limit.

DOI: https://doi.org/10.1530/REP-13-0648

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-93987
Accepted Version

Originally published at:
Kautz, Ewa; Gram, Aykut; Aslan, Selim; Ay, Serhan Serhat; Selcuk, Murat; Kanca, Halit; Koldas, Ece; Akal, Eser; Karakas, Kubra; Findik, Murat; Boos, Alois; Kowalewski, Mariusz Pawel (2014). Expression of genes involved in the embryo-maternal interaction in the early pregnant canine uterus. Reproduction, 147(5):703-717.
DOI: https://doi.org/10.1530/REP-13-0648
Title: Expression of genes involved in the embryo-maternal interaction in the early pregnant canine uterus

Short title: Embryo-maternal interaction in the dog.

Authors: E Kautz¹, A Gram¹, S Aslan², SS Ay³, M Selçuk⁴, H Kanca², E Koldaş³, E Akal⁴, K Karakaş², M Findik³, A Boos¹, MP Kowalewski¹

1) Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland.
2) Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ankara, Turkey.
3) Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey.
4) Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey

Correspondence:
PD Mariusz P. Kowalewski, PhD
Institute of Veterinary Anatomy
Vetsuisse Faculty
University of Zurich
Winterthurerstrasse 260
CH-8057 Zurich, Switzerland
Tel.: 0041-44-6358784; Fax.: 0041-44-6358943
Email: kowalewskipl@yahoo.de or kowalewski@vetanat.uzh.ch
Abstract

Although there is no acute luteolytic mechanism in the absence of pregnancy in the bitch a precise and well-timed embryo-maternal interaction seems to be required for the initiation and maintenance of gestation. Since only limited information is available about these processes in dogs, here, the uterine expression of possible decidualization markers was investigated during the pre-implantation stage (days 10-12) of pregnancy and in corresponding non-pregnant controls. Additionally, the expression of selected genes associated with blastocyst development and/or implantation was investigated in embryos flushed from the uteri used for this study (unhatched and hatched blastocysts). There was an upregulated expression of prolactin receptor (PRLr) and insulin-like growth factor 2 (IGF2) observed pre-implantation. The expression of PRL and of IGF1 was unaffected, and neither was the expression of progesterone- or estrogen receptor β (ERβ). In contrast, ERα-levels were elevated during early pregnancy. Prostaglandin (PG)-system revealed upregulated expression of PGE2-synthase and its receptors, EP2 (PTGER2) and EP4 (PTGER4), and of the PG-transporter. Elevated levels of PGF2α-synthase (PGFS/AKR1C3) mRNA, but not the protein itself, were noted. Expression of prostaglandin-endoperoxide synthase 2 (PTGS2,COX2) remained unaffected. Most of the transcripts were predominantly localized to the uterine epithelial cells, myometrium and, to a lesser extent, to the uterine stroma. PGES mRNA was abundantly expressed in both groups of embryos and appeared higher in the hatched ones. The expression level of IGF2 mRNA appeared higher than that of IGF1 mRNA in hatched embryos. In unhatched embryos IGF1, IGF2 and COX2 mRNA levels were below the detection limit.
Introduction

Establishment and maintenance of pregnancy require synthesis and well-orchestrated secretion of a plethora of regulatory factors that establish the uterine milieu needed for embryo implantation and development. The vast majority of these factors remain under the control of progesterone, which is an essential pleiotropic regulator of uterine function.

Because there is no placental steroidogenic activity in the dog, the provision of circulating progesterone depends on corpora lutea (CL) as the major source of this hormone throughout gestation (Concannon et al. 1989). In livestock, e.g., cattle, pigs and horses, it is well established that uterine PGF2α is luteolytic and is responsible for terminating the luteal phase of the estrous cycle in non-pregnant females; therefore, there is no pseudopregnancy in these animals. In contrast to livestock, at least in non-pregnant bitches, there is no uterine luteolysin that could be required for normal ovarian cyclicity, since normal ovarian function is observed following hysterectomy (Olson et al. 1984, Hoffmann et al. 1992). Furthermore, a luteolytic role of intraluteally produced prostaglandins can be ruled out (Kowalewski et al. 2006b, Kowalewski et al. 2009). Thus, the absence of an acute luteolytic mechanism in the non-pregnant bitch (Concannon et al. 1989, Hoffmann et al. 1992) results in a physiological pseudopregnancy and a luteal life span similar to, or even longer than that observed in pregnant bitches. In contrast, in pregnant bitches, the steep prepartum progesterone decline is associated with strongly increased PGF2α concentrations in the maternal circulation (Nohr et al. 1993), implying its role during prepartum luteolysis and/or parturition.

Prostaglandin E2 (PGE2) is one of the important luteotrophic factors in the dog (Kowalewski et al. 2008, Kowalewski et al. 2009, Kowalewski et al. 2013). As recently shown, PGE2 is capable of activating progesterone synthesis in canine luteal cells isolated from early developing CL acting at the level of steroidogenic acute regulatory (STAR) protein expression and function (Kowalewski et al. 2013). Although both luteinizing hormone (LH) and prolactin (PRL) are luteotrophic factors, with PRL being the predominant one (Concannon 1980, Okkens et al. 1990, Onclin et al. 1993, Onclin et al. 2000), gonadotrophin support does not seem to be required for luteal maintenance during the early CL phase (Okkens et al. 1986).

Consequently, the canine CL seems to possess an inherent life span, resulting in a similar progesterone secretion pattern in pregnant and non-pregnant animals which is mirrored in circulating progesterone levels that do not differ significantly until shortly before parturition; at that time, when a dramatic prepartum progesterone decline is observed, signaling the onset of
parturition (Concannon et al. 1989). This hormone profile precludes progesterone as a usable marker for detection of pregnancy in the bitch. Moreover, no pregnancy-associated increase in estrogens is observed in the dog (Hoffmann et al. 1994).

Even though knowledge concerning the endocrine control of the canine reproductive cycle has greatly improved, there is still a lack of information concerning the progesterone-dependent establishment of the intimate, initial embryo-maternal contact, and the role of the early canine embryo during this process. In particular, knowledge about endocrine mechanisms regulating the uterine microenvironment prior to implantation is still limited for the dog. This aspect is important for the entire early gestational period up until days 17-18 after mating, at which time implantation takes place in dogs, immediately followed by the start of placenta formation (Amoroso 1952).

Prior to that, the progesterone-dependent decidualization process starts, which is characterized by a very strong, species-specific remodeling of the uterine tissues, especially at the implantation sites. As a result of this change, maternal stroma-derived, so-called decidual cells, are the only cells of the canine placenta expressing the progesterone receptor (PGR) (Vermeirsch et al. 2000, Kowalewski et al. 2010). Interfering with PGR function, e.g., by application of an antigestagen, will unequivocally lead to preterm parturition/abortion (Baan et al. 2008, Kowalewski et al. 2010).

In some earlier studies aimed at detecting factors possibly contributing to embryo implantation in the dog, no differences were found in the expression of heat shock proteins and acute phase proteins between the uteri of early pregnant and non-pregnant dogs (Evans & Anderton 1992, Buhi et al. 1993, Concannon et al. 1996). Recently CD8, interleukin (IL)4 and interferon gamma (IFNγ)-mRNA were found as being abundantly expressed in the early pregnant uterus, while the expression of CD4, tumor necrosis factor alpha (TNFα) and IL6 mRNA seemed to be targeted to the non-pregnant uterus (Schafer-Somi et al. 2008, Beceriklisoy et al. 2009). In contrast to insulin-like growth factor 1 (IGF1), the expression of IGF2 mRNA was found both during early pregnancy and in the non-pregnant uterus (Schafer-Somi et al. 2008). Even though these data, which are mostly based on qualitative transcriptional analysis studies, still need further confirmation, they indicate the differential regulation of the uterine function in the pregnant vs. non-pregnant dogs and suggest a possible role of the pre-implantation embryo in this process.
Together with IGF1 and -2, the increased endometrial expression of PRL belongs to the so-called markers of decidualization (Irwin et al. 1994, Ramathal et al. 2010). Recently, (Kowalewski et al. 2011b) we have speculated that PRL acting through endo- and/or paracrine mechanisms might be involved in endometrial glandular secretory function in the dog. Furthermore, Bukowska et al. (Bukowska et al. 2011) reported an increased expression of integrins-α2b, -β2 and -β3 and of vasoepithelial growth factors (VEGF) -165, -182 and -188 in the uterus of early pregnant bitches. Nevertheless, the factors and endocrine pathways regulating the functions of the pregnant uterus during the onset of canine pregnancy require further elucidation. Improving our knowledge about the establishment and composition of the proper uterine pre-implantation milieu could improve understanding of the etiopathogenesis of some frequently occurring diestrual disorders of the uterus, such as endometrial hyperplasia complex. This disorder seems to originate from a dysregulated endocrinological response of the uterus to hormonal stimulation during the luteal phase of the estrous cycle and is considered by many authors as an initial phase in the development of pyometra. Furthermore, the poor outcome of in vitro fertilization procedures in canids may also be related to an inappropriate oocyte maturation environment, lacking growth factors required for acquisition of full embryo developmental competence (Luvoni et al. 2006).

Consequently, the expression and cellular localization of several genes that are possibly differentially regulated during canine early pregnancy, including the so-called decidualization markers, were investigated during the pre-implantation stage of pregnancy and in corresponding uterine tissues from non-pregnant dogs. During this early stage of pregnancy, the survival and development of free-floating embryos are dependent on the intra-uterine environment. The expression of E-cadherin (CDH1), a cell adhesion protein, whose decreased expression is frequently associated with increased migratory activity of different cell types, was also evaluated. Additionally, while limited by availability of the experimental material, the expression of selected genes was investigated when possible in embryos flushed from the early pregnant uteri used for this study.

Materials and methods

Tissue collections

Uterine tissues from eight (n=8) early pregnant (pre-implantation group, days 10-12 of pregnancy), crossbreed, healthy bitches were used for this study. The day of mating (Day 0) was 2-3 days after ovulation, which was determined by vaginal cytology and by progesterone
measurements (>5 ng/ml in peripheral blood). The pre-implantation stage of pregnancy was confirmed by flushing embryos from uteri. Dogs determined as non-pregnant in the uterine flushings served for negative controls (n=6). Uterine samples were collected via ovariohysterectomy. All experimental procedures were performed in accordance with animal welfare legislation.

For isolation of RNA, immediately after surgery, uterine tissues (including all anatomical layers) were trimmed of surrounding connective tissues and shock-frozen in liquid nitrogen; longer storage was at -80°C.

For immunohistochemistry (IHC) and in situ hybridization (ISH), after surgery tissue samples were fixed for 24 hrs at +4°C in 10% neutral phosphate buffered formalin. Afterwards, they were washed daily with phosphate buffered saline (PBS) for one week, subsequently dehydrated in a graded ethanol series and embedded in paraffin-equivalent Histo-Comp (Vogel, Giessen, Germany).

Additionally, embryos sampled from 5 uteri (n=19) were available for this study. After careful evaluation under a stereomicroscope, embryos were classified into two groups: hatched blastocysts (n=12, 63%) and unhatched blastocysts (n=7, 37%), and immediately frozen and stored at -80°C.

RNA isolation and reverse transcription (RT)

TRIZOL®-Reagent (Invitrogen, Carlsbad, CA) was used following the manufacturer’s protocol in order to isolate total RNA from all samples investigated. The RNA content was measured with a NanoDrop 2000 UV-Vis Spectrophotometer® (Thermo Scientific, Wilmington, USA).

For further purification of the RNA content, DNase treatment with RQ1 RNAse-free DNAse (Promega, Dübendorf, CH) was performed following the manufacturer’s instructions. For each sample, 100-200 ng of DNase-treated total RNA were used in the reverse transcription (RT) and complementary DNA (cDNA) was synthesized using RT reagents purchased from Applied Biosystems (Foster City, CA, USA) with random hexamers used as primers according to our previously published protocol (Kowalewski et al. 2006b, Kowalewski et al. 2011b). All reactions were carried out in an Eppendorf Mastercycler® (Vaudaux-Eppendorf AG, Basel, CH). The following RT conditions were applied: 8 min at 21°C, then 15 min at 42°C, after which the reaction was stopped by incubation for 5 min at 99°C.
Homology cloning of canine specific insulin-like growth factor receptor 1 (IGF1R)

The canine specific IGF1R cDNA had not been characterized prior to this study. Thus, to provide required data on the mRNA level, molecular cloning and sequencing were performed. Using an online available predicted sequence, canine-specific IGF1R primers were designed and ordered from Microsynth AG (Balgach, CH): forward 5'-CTC GAC AAC CAG AAC TTG C-3' and reverse 5'-GTT GTG GCG GTA AAG GTA AC-3'. The GeneAmp Gold RNA PCR Kit from Applied Biosystems was used in a hot-start PCR reaction according to our previously described protocol (Kowalewski et al. 2006b, Kowalewski et al. 2011b). The annealing temperature was 58°C. Total RNA obtained from at least three uterine samples was used, and PCR fragments comprising 717bp of partial canine IGF1R were successfully amplified. The following negative controls were run for each experiment: autoclaved water used instead of cDNA (no template control) and the so-called RT-minus control, i.e., samples in which no RT reaction was performed. The PCR products were separated on a 2% ethidium bromide stained agarose gel, extracted using a Qiaex II gel extraction system (Qiagen GmbH Hilden, Germany), subcloned into pGEM-T vector (Promega, Dübendorf, CH) and transformed and amplified in XL1 Blue competent cells (Stratagene, La Jolla, CA, USA). After being purified with Pure Yield™ Plasmid MidiPrep System (Promega), bacterial plasmids were sequenced on both strands with T7 and Sp6 primers (Microsynth). Finally, the cloned sequence was submitted to GenBank with the following accession number: KF793925.

Real Time (TaqMan) PCR and data evaluation

Real time PCR (TaqMan) analysis was performed in an automated fluorometer ABI PRISM 7500 Sequence Detection System (Applied Biosystems), in accordance with the manufacturer’s instructions and following our previously described protocol (Kowalewski et al. 2010, Kowalewski et al. 2011a). The cDNA synthesis and negative controls were as for qualitative PCR described above. Fast Start Universal Probe Master (ROX®) (Roche Diagnostics AG, Schweiz) was used. The semi-quantitation of target gene expression was performed using three independent endogenous reference genes (GAPDH, 18SrRNA and cyclophilin A) in the comparative CT method (ΔΔCT method) as described previously (Kowalewski et al. 2010, Kowalewski et al. 2011a) and according to the ABI 7500 Fast Real Time PCR System manufacturer’s protocol. The efficiencies of the PCR assays were established by the CT slope method assuring approximately 100% reaction efficiency. Selected PCR products were sent for
sequencing (Microsynth). Primers and 6-carboxyfluorescein (6-FAM) and 6-carboxytetramethyl-rhodamine (TAMRA)-labelled TaqMan probes, provided by Microsynth, are listed in Table 1. The following canine-specific TaqMan Gene Expression Assays were commercially available and purchased from Applied Biosystems: cyclophilin A (Prod. No. Cf03986523-gH), E-cadherin (CDH1) (Prod. No. Cf02624268_m1), IGF1 (Prod. No. Cf02627846_m1) and IGF2 (Prod. No. Cf02647136_m1).

An unpaired, two-tailed Student’s t-test was performed to compare the levels of target genes in uterine samples from early pregnant and non-pregnant control dogs. Numerical data are presented as the mean ± standard deviation (S.D.). Due to the uneven distribution of the Real Time PCR data obtained for expression of LH-receptor (LHR), IGF1R and oxytocin receptor (OTR), results are presented as geometric means with deviation factor (Xg : DF±1). The statistical software program GraphPad 3.06 (GraphPad Software, San Diego, CA, USA) was used. P < 0.05 was considered statistically significant.

Immunohistochemistry

Formalin-fixed, paraffin-embedded uterine cross-sections (2-3µm thick) from early pregnant and non-pregnant bitches, mounted on SuperFrost Plus microscope slides (Menzel-Gläser, Braunschweig, Germany), were subjected to the standard immunoperoxidase detection method following our previously described protocol (Kowalewski et al. 2006a, Kowalewski et al. 2010, Gram et al. 2013a). The list of primary and secondary antibodies and of the respective IgG irrelevant antibodies (negative/isotype controls) is presented in Table 2. Additionally, slides omitting the primary antibodies served as negative controls. The nonspecific binding sites were blocked with either 10% horse serum or 10% normal goat serum, depending on the secondary antibody used in experiments. Peroxidase activity was detected using Liquid DAB+ substrate kit (Dako Schweiz AG, Baar, CH). Sections were counterstained with hematoxylin and embedded in Histokit (Assistant, Osterode, Germany)

In situ hybridization (ISH)

According to the previously described protocol (Kowalewski et al. 2006a, Gram et al. 2013a), non-radioactive ISH on paraffin-embedded sections was performed in order to investigate the uterine cellular localization of IGF1 and IGF2 at the mRNA level.
PCR products generated with the following primers were used for subsequent synthesis of the digoxigenin (DIG)-labeled cRNA probes: *IGF1* (forward) 5′- GGT GGA CGC TCT TCA GTT C-3', *IGF1* (reverse) 5′- TCC TGC ACT CCC TCT ACT TG -3' (product length 268bp, annealing temperature 60°C) and *IGF2* (forward) 5′- GTG CTG CTT TGC TGC TTA C -3', *IGF2* (reverse) 5′- GGG TAT CTG GGG AAG TTG TC -3' (product length 251 bp, annealing temperature 60°C). The DIG-labelled cRNA was detected using alkaline phosphatase conjugated sheep anti-DIG Fab Fragments (Roche Diagnostics) at 1:5,000 dilution in 1% ovine serum according to the manufacturer’s instructions. Signals were detected with the substrate 5-bromo-4-chloro-3-indolyl phosphate and nitroblue tetrazolium (NBT/BCIP; Roche Diagnostics).

Results

Temporal expression of selected genes in canine uterine tissues during the pre-implantation stage of pregnancy

Expression of several genes, as listed in Table 1, was investigated at both the mRNA and protein levels in uteri of early pregnant animals (pre-implantation) and compared with their expression in corresponding tissues from non-pregnant dogs (non-pregnant controls).

Expression of all the selected genes was detectable in tissue samples obtained from early-pregnant and non-pregnant dogs. A significantly higher expression of *IGF2* and *PRLr* mRNA was observed in the early pregnant uterus (P=0.04 and P=0.02, respectively) compared to the controls (Fig. 1). The opposite effect was observed for the uterine expression of *LHR*, which was significantly downregulated during early pregnancy (P=0.01) (Fig.1). However, the expression of *IGF1*, *IGF1R* and *PRL* mRNA remained unaffected (P=0.5, P=0.47 and P=0.42, respectively) by uterine exposure to embryos (Fig. 1). In addition, *PRL*-mRNA was generally expressed at a very low level, and was frequently below the detection limit in both groups of animals.

Among the steroid hormone receptors, only the expression of estrogen receptor alpha (*ERα*) was significantly (P=0.03) elevated in the early pregnant uterus (Fig. 2), while expression of the progesterone receptor (*PGR*) and of *ERβ* did not differ between the two groups (P=0.27 and P=0.23, respectively). Similarly, expression of the oxytocin receptor (*OTR*), which varied widely among individuals in both groups, was unaffected (P=0.5) by the reproductive status of the animals. The expression of *E-cadherin* (*CDH1*) did not differ (P=0.25).

Concerning expression of the major members of the prostaglandin (PG) system, no statistically significant differences were observed for the expression of mRNA encoding for the
prostaglandin-endoperoxide synthase 2 (PTGS2, formerly known as COX2) (P=0.8), the PGE2 receptor designated as EP4 (PGER4) (P=0.21), and 15-hydroxy prostaglandin dehydrogenase (HPGD) (P=0.29) (Fig. 3 A,D and Fig. 4D). In contrast, a significant upregulation was noted for mRNA expression of PGE2-synthase (PGES) (P=0.04) and PGF2α-synthase (PGFS/AKR1B3) (P=0.007), as well as of their respective receptors, EP2 (PTGER2) (P=0.02) and FP (PTGFR) (P=0.02) and of the PG-transporter (PGT) (P=0.02), in the pre-implantation uterus compared with non-pregnant uterus (Fig. 3B,C and 4 A-C).

Localization of gene expression

In the pre-implantation uterus immunohistochemistry clearly localized IGF2 protein expression to the surface epithelial cells and to the epithelial cells of the superficial and deep uterine glands; clearly detectable signals were also localized in the myometrium. Weaker signals were observed in the endometrial stroma (Fig. 5 B,C). No, or only very weak immunohistochemical signals were observed for IGF2 expression in the uteri of non-pregnant dogs (Fig. 5 A). A localization pattern similar to this but in both early pregnant and non-pregnant uteri was observed at the mRNA level by using ISH (Fig. 5. H,I). As also determined by ISH, IGF1 expression was co-localized with uterine IGF2 expression (Fig. 5 H,I). There was no anti-IGF1 canine-specific antibody available for the immunohistochemical studies. The IGF1R protein expression followed the IGF1 and IGF2 distribution pattern with stronger signals observed in the early pregnant uterus (Fig. 5 D,E). While weaker endometrial signals were observed for PRLr protein expression in non-pregnant animals (Fig. 6 A,B), stronger signals were detected in the surface and glandular endometrial epithelial cells of the early pregnant uterus (Fig. 6 C,D). Clear myometrial staining was noted in both groups of animals (Fig. 6 B,D).

Expression of PGR was detectable in the uteri of both early-pregnant and control animals but did not vary widely between the two groups. The immunohistochemical signals were localized to nuclei of both superficial and glandular epithelial cells, as well as the smooth muscle cells of the myometrium and to a lesser extent in the endometrial stroma (Fig. 7 A,B).

The ERα protein was co-localized with PGR, however, signals were distinctly stronger in uteri after embryo exposure than in the non-pregnant controls (Fig. 7 C,D). Much weaker staining was observed for uterine ERβ expression which did not differ between the two groups and showed a similar localization pattern as for the other nuclear receptors (Fig. 7 E,F).
Whereas endometrium stained negatively for COX2, however, myometrial signals were strong (Fig. 8 A), but no or only very weak uterine signals were observed for PGFS/AKR1C3 protein, in both groups of animals (Fig. 8 B).

The expression of PGT, PGES, EP2 and EP4 revealed a similar protein distribution pattern as PRLr, showing their co-localization and higher abundance in endometrial epithelial cells, the myometrium and stromal cells in the pre-implantation uterus (Fig. 8 C,D and 9 A-F). For all these factors, staining in the endometrial stroma was weaker than in the epithelial compartments. High variability for the HPGD immunohistochemical signals was observed between individual animals in both groups. They tended, however, to be stronger in the early-pregnant uteri and revealed a similar localization pattern, but with distinctly stronger staining in the deep uterine glands (Fig. 8 E-G).

Expression of selected genes in early, free-floating canine embryos prior to implantation

Due to the limited availability of the embryo material, investigations were restricted to detecting the expression of IGF1, IGF2, COX2 and PGES in the two groups of embryos (unhatched and hatched blastocysts) collected from five early pregnant bitches. Embryos were pooled in order to reach the required limits of detection. Consequently, no statistical analysis of gene expression was possible.

Whereas the expression of IGF1, IGF2 and COX2 mRNA was below the detection limit in the unhatched embryos, the PGES mRNA was abundantly expressed and detectable in both unhatched and hatched blastocysts, with apparently higher expression level in the latter ones (Fig. 10A). The expression of IGF2 mRNA seemed to be higher than that of IGF1 mRNA in the hatched group of embryos (Fig. 10 B), while COX2 and PGES showed similar transcript abundance (Fig. 10 C).

Discussion

The uterine response to early embryo exposure was investigated during the pre-implantation stage of canine pregnancy by measuring the expression of several target genes. Our investigations were based on the assumption that, in view of the lack of an anti-luteolytic signal in the dog resulting in similar hormonal status in early-pregnant and non-pregnant dioestric bitches, some local effects would be exerted by the early pre-implantation embryo that modify the uterine milieu, serving as a prerequisite for a successful implantation and ensuring embryo survival prior
to attachment. The effects of seminal plasma-derived bioactive factors in modulation of the uterine endocrine milieu, and possibly having an impact on the initiation of pregnancy in dogs, were not separately investigated in this study, but would certainly merit future investigations.

Among the genes investigated, IGF1, IGF2 and PRL count as the most prominent and well-characterized markers of the decidualization process (Irwin et al. 1994, Ramathal et al. 2010). By interacting mainly with the IGF1R (Wang & Chard 1999), both IGF1 and IGF2 are mitogenic factors whose uterine expression is regulated by steroidogenic hormones (De Cock et al. 2002, Bhatti et al. 2007, Dantzer & Swanson 2012). They possess differentiative properties capable of influencing embryonic development, as shown, e.g., in humans and ruminants (Wathes et al. 1998, Irwin et al. 1999, Kim et al. 2008). Additionally, in human decidua for example, IGF1 regulates PRL and arachidonic acid secretion (Handwerger et al. 1991), the latter serving as a common precursor for prostaglandin synthesis.

As for the early pregnant canine uterus investigated in the present study, only the expression of IGF2 was significantly upregulated. This was concomitant with the greater abundance of IGF2 transcripts in hatched embryos collected at days 10-12 of canine pregnancy, suggesting the predominant role of IGF2 compared to IGF1, during this very early stage of pregnancy in the dog. In contrast to the unaffected IGF1R-mRNA expression levels, which varied widely among individuals, expression of the respective protein was clearly detectable and seemed to be more strongly expressed during early pregnancy, implying the involvement of posttranscriptional regulatory mechanisms in its expression.

The uterine expression of PRLr, but not of PRL, was strongly upregulated after embryo exposure pre-implantation. This finding agrees with our previous report about the uterine and placental expression of PRLr (Kowalewski et al. 2011b), implying the possible role of PRLr-mediated effects in endometrial glandular secretory activity during the production of uterine milk (histiotrophe), a mechanism that was also suggested for humans (Jabbour et al. 1998). Our previous observation that interfering with progesterone receptor function by applying an antigestagen results in a decreased utero/placental PRLr expression, suggests that this involves progesterone-mediated effects (Kowalewski et al. 2011b). In the present study, although uterine PRL expression was relatively low, and frequently even below the detection limit, possible paracrine effects of locally produced PRL cannot be ruled out. Its contribution to circulating PRL levels does not seem, however, very likely. In contrast to PRLr expression, the expression of LHR was downregulated in the early pregnant canine uterus. Recently, the role of LHR was
suggested as a possible important factor contributing to the implantation process in mice (Gridelet et al. 2013). While any final conclusion concerning LHR function during the onset of canine pregnancy would be premature, we believe that this warrants further investigations. Besides acting as one of the most potent uterotonic hormones, oxytocin also regulates secretion of other hormones, e.g., prostaglandins (Meier et al. 1995, Fuchs et al. 1999). This prompted us to investigate expression of the oxytocin receptor (OTR) in the early pregnant uterus and its corresponding non-pregnant counterpart. Most recently (Gram et al. 2013b), OTR was localized by our group to the uterine surface epithelium of the pre-implantation uterus, specifically in the superficial and deep glands and the vascular endothelial and stromal cells. In the present study, however, OTR expression varied widely among individuals and, consequently, did not differ significantly between the two groups, thereby not allowing any further conclusions to be drawn regarding its potential secretory or constrictory activity during the onset of canine pregnancy. Such activity could relate, e.g., to mechanisms involved in the distribution and positioning of free-floating embryos prior to attachment, or to the role of oxytocin as a mediator of local prostaglandin effects.

The expression of COX2 (PTGS2), the rate-limiting factor in the provision of prostaglandins, and of PGFS/AKR1C3 protein, was low in the early dioestric uterus and remained unaffected by the presence of embryos. The PGFS/AKR1C3 is the only canine-specific isoform of PGFS known to date and is responsible for the direct conversion of PGH2 to PGF2α (Gram et al. 2013a). Since expression of the respective mRNAs was significantly increased in early pregnancy, some local effects and possible involvement of posttranscriptional regulatory mechanisms cannot be excluded, especially in view of the concomitantly increased expression of the PGF2α-receptor (FP, PTGFR). In contrast, the expression of PGES was significantly affected both at the mRNA and protein levels in response to early embryo exposure, which together with the upregulated expression of PGT further implies local effects of prostaglandins. This conclusion also agrees with our prior report suggesting a role of prostaglandins in canine decidualization, placentation and, later on, in trophoblast invasion (Kowalewski et al. 2010, Gram et al. 2013a). The low levels of COX2 expression, together with clearly detectable uterine HPGD expression (the enzyme responsible for conversion of PGE2 and PGF2α to their inactive metabolites) in pregnant and non-pregnant uteri, could additionally coordinate and restrict the effects of prostaglandins as local regulatory factors.
Acting through its two G protein coupled receptors designated EP2 (PTGER2) and EP4 (PTGER4), PGE2 exerts its roles mostly through the cAMP/PKA signaling pathway (Christenson et al. 1994, Boiti et al. 2001, Harris et al. 2001, Arosh et al. 2004). Also, progesterone-dependent decidualization is cAMP-mediated and this process is accelerated by PGE2 in human endometrial stromal cells (Brar et al. 1997). Similar effects of PGE2 and its potential to stimulate the decidual cell reaction were observed in rats (Kennedy & Doktorcik 1988). This could also be true for the canine species, as indicated in the present study by the increased uterine synthesis of PGES, EP2, and also EP4 protein, concomitant with the higher PGES expression in hatched embryos, possibly actively contributing to the decidualization process.

It is noteworthy that in the uterine samples investigated in the present study, derived from both early pregnant and non-pregnant bitches, stronger immunohistochemical signals were localized in the endometrial epithelial compartments. On the other hand, weaker signals were observed in the uterine stromal cells that undergo a strong, species-specific decidualization process later on in canine gestation. This, together with the unaffected IGF1 and strongly varying IGF1R mRNA expression in the pre-implantation uterus, seems to be an indicator of the early stage of uterine differentiation at the beginning of pregnancy (gestational days 10-12) observed in our study. At this time, the uterine morphology is characterized by obvious embryo-induced functional changes reflected in the modified uterine milieu observed here, but does not yet exhibit the very strong structural changes related to the intense remodeling of uterine tissues that occur later in gestation, especially during decidua formation at the implantation sites. This is also indicated by the unaffected expression of E-cadherin (CDH1).

Taken together with some earlier studies, our investigations describe the expression of genes that are differentially regulated in response to the presence of free-floating embryos in the uterine lumen of early pregnant dogs and provide a basis for better understanding of the uterine milieu required for proper embryo development and, thereby, for successful establishment of canine pregnancy. Elucidating possible functional interactions between these factors, e.g., their role in uterine growth and secretory activity, could be helpful in understanding some pathological conditions connected with dysregulated endocrinological responses of the uterus, that are frequently caused by impaired cross-talk between growth factors and hormones.

Declaration of interest: The authors declare that there is no conflict of interest. All authors read
and approved the final version of the manuscript.

Grant support: Swiss National Science Foundation (SNSF) research grant number 40831003A_140947.

Acknowledgements: Authors are grateful to Dr. Barry Bavister for careful editing of the manuscript. The technical expertise and contributions of Elisabeth Högger and Stefanie Ihle are gratefully appreciated.
References:

Concannon PW, Gimpel T, Newton L & Castracane VD 1996 Postimplantation increase in plasma fibrinogen concentration with increase in relaxin concentration in pregnant dogs. *American journal of veterinary research* 57 1382-1385.

Kowalewski MP, Beceriklisoy HB, Aslan S, Agaoglu AR & Hoffmann B 2009 Time related changes in luteal prostaglandin synthesis and steroidogenic capacity during

Figure legends:

Figure 1.
Expression of insulin-like growth factor 1 (IGF1), IGF2, IGF-receptor 1 (IGF1R), prolactin (PRL) and its receptor (PRLr), and luteinizing hormone receptor (LHR) as determined by Real Time (TaqMan) PCR in uterine samples from early-pregnant uterus (pre-implantation; embryo-induced effects), and its non-pregnant counterparts. Numerical data are presented either as the mean ± standard deviation (SD) (A,C-E), or as geometric means with deviation factor (Xg·DF±1) (B,F). Bars with (*) differ at: (C) P=0.04, (E) P=0.02, (F) P=0.01.

Figure 2.
Expression of estrogen receptor alpha (ERα), ERβ, progesterone receptor (PGR), oxytocin receptor (OTR) and E-cadherin (CDH1) as determined by Real Time (TaqMan) PCR in uterine samples from early-pregnant uterus (pre-implantation; embryo-induced effects), and its non-pregnant counterparts. Numerical data are presented either as the mean ± standard deviation (SD) (A-C und E), or as geometric means with deviation factor (Xg·DF±1) (D). Bar with (*) in (A) differ at: P=0.03.

Figure 3.
Expression of cyclooxygenase 2 (COX2, PTGS2), prostaglandin E2 (PGE2)-synthase (PGES) and of PGE2 receptors, EP2 and EP4 (PTGER2 and PTGER4, respectively) as determined by Real Time (TaqMan) PCR in uterine samples from early-pregnant uterus (pre-implantation; embryo-induced effects), and its non-pregnant counterparts. Numerical data are presented as the mean ± standard deviation (SD). Bars with (*) differ at: (B) P=0.04, (C) P=0.02.

Figure 4.
Expression of prostaglandin F2α (PGF2α)-synthase (PGFS/AKR1C3), PGF2α-receptor (FP, PTGFR), prostaglandin transporter (PGT) and of 15-prostaglandin dehydrogenase (HPGD) as determined by Real Time (TaqMan) PCR in uterine samples from early-pregnant uterus (pre-implantation; embryo-induced effects), and its non-pregnant counterparts. Numerical data are presented as the mean ± standard deviation (SD). Bars with (*) differ at: (A) P=0.007, (B) P=0.02, (C) P=0.02.
Figure 5.
Immunohistochemical (IHC) localization of insulin-like growth factor 2 (IGF2) (A-C) and IGF receptor 1 (IGF1R) (D,E), in early pregnant (pre-implantation) canine uterus and corresponding non-pregnant uterus. The localization of IGF1 (F,G) and IGF2 (H,I) mRNA expression is presented by in situ hybridization (ISH). Solid arrows = superficial (luminal) uterine epithelium, open arrows = superficial uterine glands, solid arrowheads = deep uterine glands, open arrowheads = myometrium. The inset to (A) shows a representative IgG isotype control for anti-rabbit immune serum.

Figure 6.
Immunohistochemical (IHC) localization of prolactin receptor (PRLr) in early pregnant (pre-implantation) canine uterus (C,D) and corresponding non-pregnant uterus (A,B). Solid arrows = superficial (luminal) uterine epithelium, open arrows = superficial uterine glands, solid arrowheads = deep uterine glands, open arrowheads = myometrium. The inset to (A) shows a representative IgG isotype control for anti-goat immune serum.

Figure 7.
Immunohistochemical (IHC) localization of progesterone receptor (PGR) (A,B), estrogen receptor alpha (ERα) (C,D) and ERβ (E,F) in early pregnant (pre-implantation) canine uterus and corresponding non-pregnant uterus. Solid arrows = superficial (luminal) uterine epithelium, open arrows = superficial uterine glands, solid arrowheads = deep uterine glands. Insets to D and F show the myometrial expression of ERα and ERβ, respectively. The inset to (A) shows a representative IgG isotype control for anti-mouse immune serum.

Figure 8.
Immunohistochemical (IHC) localization of cyclooxygenase 2 (COX2, PTGS2) (A), prostaglandin F2α-synthase (PGFS/AKR1C3) (B) in early pregnant (pre-implantation) canine and of prostaglandin transporter (PGT) (C,D) and 15-prostaglandin dehydrogenase (HPGD) (E-G) in early pre-implantation uterus and corresponding non-pregnant uterus. Solid arrows =
superficial (luminal) uterine epithelium, open arrows = superficial uterine glands, solid arrowheads = deep uterine glands. Insets in B, D and G show the myometrial expression of PGFS/AKR1C3, PGT and HPGD, respectively.

Figure 9.
Immunohistochemical (IHC) localization of prostaglandin E2 - synthase (PGE2-synthase, PGES) (A,B), PGE2-receptors EP2 (PTGER2) and EP4 (PTGER4) (C,D) and (E,F), respectively, in the early pregnant (pre-implantation) canine uterus and corresponding non-pregnant uterus. Solid arrows = superficial (luminal) uterine epithelium, open arrows = uterine glands. Insets to B, D and F show the myometrial expression of PGES, EP2 and EP4, respectively. The inset to (A) shows a representative IgG isotype control for anti-guinea pig immune serum.

Figure 10.
Embryonal expression of prostaglandin E2-synthase (PGES), cyclooxygenase 2 (COX2, PTGS2), insulin-like growth factor 1 (IGF1) and IGF2 as determined by Real Time (TaqMan) PCR.

Tables:
Table 1.
List of primers and TaqMan Probes used for the semi-quantitative RT-PCR

Table 2.
List of antibodies used for the immunohistochemistry
Real Time PCR

A

IGF1

Relative levels of uterine mRNA expression

Non-pregnant	Pre-implantation

B

IGF1R

Relative levels of uterine mRNA expression

Non-pregnant	Pre-implantation

C

IGF2

Relative levels of uterine mRNA expression

Non-pregnant	Pre-implantation

D

PRL

Relative levels of uterine mRNA expression

Non-pregnant	Pre-implantation

E

PRLr

Relative levels of uterine mRNA expression

Non-pregnant	Pre-implantation

F

LHR

Relative levels of uterine mRNA expression

Non-pregnant	Pre-implantation

Figure 1
Real Time PCR

A

ERα

Relative levels of uterine mRNA expression

Non-pregnant | Pre-implantation

B

ERβ

Relative levels of uterine mRNA expression

Non-pregnant | Pre-implantation

C

PGR

Relative levels of uterine mRNA expression

Non-pregnant | Pre-implantation

D

OTR

Relative levels of uterine mRNA expression

Non-pregnant | Pre-implantation

E

E-cadherin (CDH1)

Relative levels of uterine mRNA expression

Non-pregnant | Pre-implantation

Figure 2
Real Time PCR

A
COX2 (PTGS2)
![Graph showing relative levels of uterine mRNA expression for COX2 in non-pregnant and pre-implantation states.](image)

B
PGES
![Graph showing relative levels of uterine mRNA expression for PGES in non-pregnant and pre-implantation states.](image)

C
EP2 (PTGER2)
![Graph showing relative levels of uterine mRNA expression for EP2 in non-pregnant and pre-implantation states.](image)

D
EP4 (PTGER4)
![Graph showing relative levels of uterine mRNA expression for EP4 in non-pregnant and pre-implantation states.](image)

Figure 3
Real Time PCR

A
PGFS/AKR1C3

B
FP (PGFR)

C
PGT

D
HPGD

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

A. COX2; early pregnant

B. PGFS; early pregnant

C. PGT; non-pregnant

D. PGT; early pregnant

E. HPGD; non-pregnant

F. HPGD; early pregnant

G. HPGD; early pregnant
Figure 9

A. PGES; non-pregnant

B. PGES; early pregnant

C. EP2; non-pregnant

D. EP2; early pregnant

E. EP4; non-pregnant

F. EP4; early pregnancy
Real Time PCR

A

Relative levels of embryonal mRNA expression

Unhatched Hatched

PGES

B

Hatched embryos

Relative levels of embryonal mRNA expression

IGF1 IGF2

C

Hatched embryos

Relative levels of embryonal mRNA expression

COX2 (PTGS2) PGES
<table>
<thead>
<tr>
<th>Primer</th>
<th>Accession numbers</th>
<th>Primer Sequence</th>
<th>Product length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH (forward)</td>
<td>AB028142</td>
<td>5'-GCT GCCAAATAT GACGACATC-3'</td>
<td>75bp</td>
</tr>
<tr>
<td>GAPDH (reverse)</td>
<td></td>
<td>5'-GTA GCC CAG GAT GGC TTT GAG-3'</td>
<td></td>
</tr>
<tr>
<td>GAPDH (TagMan Probe)</td>
<td></td>
<td>5'-TCC CTC CGA TGC CAG CAC CTT CAC CCT CTT-3'</td>
<td></td>
</tr>
<tr>
<td>i8SrRNA (forward)</td>
<td>FJ797658</td>
<td>5'-GTC GCT CGC TCC TCT CCT ACT-3'</td>
<td>125bp</td>
</tr>
<tr>
<td>i8SrRNA (reverse)</td>
<td></td>
<td>5'-GGC TGA CCG GGT TGG TTT-3'</td>
<td></td>
</tr>
<tr>
<td>i8SrRNA (TagMan Probe)</td>
<td></td>
<td>5'-ACA TGC CGA CAG ATG AGG CGG-3'</td>
<td></td>
</tr>
<tr>
<td>IGFR1 (forward)</td>
<td>XM545828</td>
<td>5'-GGA TCT TGG TGG TGG CAG TGG CAT-3'</td>
<td>119bp</td>
</tr>
<tr>
<td>IGFR1 (reverse)</td>
<td></td>
<td>5'-CAG CAC TAC ACG TAC CAT GCT AT-3'</td>
<td></td>
</tr>
<tr>
<td>IGFR1 (TagMan Probe)</td>
<td></td>
<td>5'-ATT ATG GTC GTA GCA GTG TGT TTG AAA GGC-3'</td>
<td></td>
</tr>
<tr>
<td>PRLr (forward)</td>
<td>NM_00108275</td>
<td>5'-CAA GCC CAA CAG ATC AAC ATC-3'</td>
<td>104bp</td>
</tr>
<tr>
<td>PRLr (reverse)</td>
<td></td>
<td>5'-CTG AGG GTG CTG GGT CAC CAA ACC-3'</td>
<td></td>
</tr>
<tr>
<td>PRLr (TagMan Probe)</td>
<td></td>
<td>5'-CTG AGG GTG CTG GGT CAC CAA ACC-3'</td>
<td></td>
</tr>
<tr>
<td>PGR (forward)</td>
<td>NM_001003074</td>
<td>5'-CCA GCC GAG GAG AGC ACT CAC CAT-3'</td>
<td>113bp</td>
</tr>
<tr>
<td>PGR (reverse)</td>
<td></td>
<td>5'-AGG GAT GCA GAT CAC CAT GCT AT-3'</td>
<td></td>
</tr>
<tr>
<td>PGR (TagMan Probe)</td>
<td></td>
<td>5'-AGG GAT GCA GAT CAC CAT GCT AT-3'</td>
<td></td>
</tr>
<tr>
<td>EReα (forward)</td>
<td>XM533454</td>
<td>5'-CCC ATG GAG GAG ACA AAC CAT-3'</td>
<td>93bp</td>
</tr>
<tr>
<td>EReα (reverse)</td>
<td></td>
<td>5'-CCC ATG GAG GAG ACA AAC CAT-3'</td>
<td></td>
</tr>
<tr>
<td>EReα (TagMan Probe)</td>
<td></td>
<td>5'-CCC ATG GAG GAG ACA AAC CAT-3'</td>
<td></td>
</tr>
<tr>
<td>COX2 (forward)</td>
<td>HQ110882</td>
<td>5'-GGA GCA TAA CAG AGT GTG TGA TGT G-3'</td>
<td>87bp</td>
</tr>
<tr>
<td>COX2 (reverse)</td>
<td></td>
<td>5'-GGA GCC GAG GAG AGC ACT CAC CAT-3'</td>
<td></td>
</tr>
<tr>
<td>COX2 (TagMan Probe)</td>
<td></td>
<td>5'-GGA GCC GAG GAG AGC ACT CAC CAT-3'</td>
<td></td>
</tr>
<tr>
<td>PGFS (forward)</td>
<td>NM_001012344</td>
<td>5'-AGG GCC TGC CAA GTC TAT TGG-3'</td>
<td>74bp</td>
</tr>
<tr>
<td>PGFS (reverse)</td>
<td></td>
<td>5'-AGG GCC TGC CAA GTC TAT TGG-3'</td>
<td></td>
</tr>
<tr>
<td>PGFS (TagMan Probe)</td>
<td></td>
<td>5'-AGG GCC TGC CAA GTC TAT TGG-3'</td>
<td></td>
</tr>
<tr>
<td>PGES (forward)</td>
<td>NM_001122854</td>
<td>5'-GTC CTG CGG CTG GGT AGT-3'</td>
<td>89bp</td>
</tr>
<tr>
<td>PGES (reverse)</td>
<td></td>
<td>5'-GTC CTG CGG CTG GGT AGT-3'</td>
<td></td>
</tr>
<tr>
<td>PGES (TagMan Probe)</td>
<td></td>
<td>5'-GTC CTG CGG CTG GGT AGT-3'</td>
<td></td>
</tr>
<tr>
<td>PTGER2 (forward)</td>
<td>AF075602</td>
<td>5'-CAG TCT CCT TCC TCT CTT CACT CAC CAT-3'</td>
<td>78bp</td>
</tr>
<tr>
<td>PTGER2 (reverse)</td>
<td></td>
<td>5'-CAG TCT CCT TCC TCT CTT CACT CAC CAT-3'</td>
<td></td>
</tr>
<tr>
<td>PTGER2 (TagMan Probe)</td>
<td></td>
<td>5'-CAG TCT CCT TCC TCT CTT CACT CAC CAT-3'</td>
<td></td>
</tr>
<tr>
<td>PTGER4 (forward)</td>
<td>NM_001003054</td>
<td>5'-AAA TCA GCA AAA ACC CAG ACT TGG-3'</td>
<td>96bp</td>
</tr>
<tr>
<td>PTGER4 (reverse)</td>
<td></td>
<td>5'-AAA TCA GCA AAA ACC CAG ACT TGG-3'</td>
<td></td>
</tr>
<tr>
<td>PTGER4 (TagMan Probe)</td>
<td></td>
<td>5'-AAA TCA GCA AAA ACC CAG ACT TGG-3'</td>
<td></td>
</tr>
<tr>
<td>PGT (forward)</td>
<td>NM_001011558</td>
<td>5'-GAG GAT GCA GAT CAC CAT GCT AT-3'</td>
<td>116bp</td>
</tr>
<tr>
<td>PGT (reverse)</td>
<td></td>
<td>5'-GAG GAT GCA GAT CAC CAT GCT AT-3'</td>
<td></td>
</tr>
<tr>
<td>PGT (TagMan probe)</td>
<td></td>
<td>5'-GAG GAT GCA GAT CAC CAT GCT AT-3'</td>
<td></td>
</tr>
<tr>
<td>HPGD (forward)</td>
<td>NM_001284477</td>
<td>5'-GGC AGC GAA TCT CAG CAT GAC CAG-3'</td>
<td>93bp</td>
</tr>
<tr>
<td>HPGD (reverse)</td>
<td></td>
<td>5'-GGC AGC GAA TCT CAG CAT GAC CAG-3'</td>
<td></td>
</tr>
<tr>
<td>HPGD (TagMan Probe)</td>
<td></td>
<td>5'-GGC AGC GAA TCT CAG CAT GAC CAG-3'</td>
<td></td>
</tr>
<tr>
<td>OXTR (forward)</td>
<td>NM_001198659</td>
<td>5'-GAA TCA CGC TCT CGG TCT TCT CAC-3'</td>
<td>98bp</td>
</tr>
<tr>
<td>OXTR (reverse)</td>
<td></td>
<td>5'-GAA TCA CGC TCT CGG TCT TCT CAC-3'</td>
<td></td>
</tr>
<tr>
<td>OXTR (TagMan Probe)</td>
<td></td>
<td>5'-GAA TCA CGC TCT CGG TCT TCT CAC-3'</td>
<td></td>
</tr>
<tr>
<td>LHR (forward)</td>
<td>XM538486</td>
<td>5'-TCA TCA TTT GTG TTT GAT CAT TTA AA-3'</td>
<td>98bp</td>
</tr>
<tr>
<td>LHR (reverse)</td>
<td></td>
<td>5'-TCA TCA TTT GTG TTT GAT CAT TTA AA-3'</td>
<td></td>
</tr>
<tr>
<td>LHR (TagMan Probe)</td>
<td></td>
<td>5'-TCA TCA TTT GTG TTT GAT CAT TTA AA-3'</td>
<td></td>
</tr>
</tbody>
</table>

Table 1
<table>
<thead>
<tr>
<th>Name/Antigen</th>
<th>Clone</th>
<th>Company</th>
<th>Immunogen</th>
<th>Concentration</th>
<th>Species / Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFR1</td>
<td>Ibs-0227R</td>
<td>Bioss Inc., MA, USA</td>
<td>Ab against human IGFR1</td>
<td>1:800</td>
<td>rabbit polyclonal</td>
</tr>
<tr>
<td>IGF2</td>
<td>IGF-II (H103) Sc-5022</td>
<td>Santa Cruz Biotechnology, CA, USA</td>
<td>Ab against human IGF-2</td>
<td>1:200</td>
<td>rabbit polyclonal</td>
</tr>
<tr>
<td>PGR</td>
<td>clone 10A9</td>
<td>Immunotech, Hamburg, Germany</td>
<td>Ab against human C-terminal PGR</td>
<td>1:100</td>
<td>mouse monoclonal</td>
</tr>
<tr>
<td>ERα</td>
<td>NCL-ER-6F11</td>
<td>Novo Castra, New Castle, UK</td>
<td>Ab against human ERα</td>
<td>1:10</td>
<td>mouse monoclonal</td>
</tr>
<tr>
<td>ERβ</td>
<td>MCA-1974</td>
<td>Serotec, Germany</td>
<td>Ab against human ERβ</td>
<td>1:20</td>
<td>mouse monoclonal</td>
</tr>
<tr>
<td>PRLr</td>
<td>catalog no. AF 1167</td>
<td>R&D Systems Europe Ltd.</td>
<td>NSO-derived rhProlactin R extracellular domain</td>
<td>1:50</td>
<td>goat polyclonal</td>
</tr>
<tr>
<td>COX2</td>
<td>clone 33</td>
<td>BD Pharmingen, Heidelberg, Germany</td>
<td>anti-rat COX-2 IgG</td>
<td>1:100</td>
<td>mouse monoclonal</td>
</tr>
<tr>
<td>PGT</td>
<td>(G-17) Sc-103085</td>
<td>Santa Cruz Biotechnology, CA, USA</td>
<td>IgG against human PGT</td>
<td>1:100</td>
<td>goat polyclonal</td>
</tr>
<tr>
<td>PGF/AGTR1C3</td>
<td>custom made canine-specific antibody (Gram et al., 2013)</td>
<td>Eurogentec, Seraing, Belgium</td>
<td>IgG against canine-specific peptide sequence DTLFATHPDFPND, C-terminal amino acids 309-324</td>
<td>1:750</td>
<td>guinea pig polyclonal</td>
</tr>
<tr>
<td>PGES</td>
<td>custom made canine-specific antibody (Gram et al., 2013)</td>
<td>Eurogentec, Seraing, Belgium</td>
<td>IgG against canine-specific peptide sequence RSDQDVDRCLRRAHRND, C-terminal amino acids 61-76</td>
<td>1:300</td>
<td>guinea pig polyclonal</td>
</tr>
<tr>
<td>HPGD</td>
<td>custom made canine-specific antibody (Gram et al., 2013)</td>
<td>Eurogentec, Seraing, Belgium</td>
<td>IgG against canine-specific peptide sequence HFQDYETTPFHAKTQ, C-terminal amino acids 252-266</td>
<td>1:750</td>
<td>guinea pig polyclonal</td>
</tr>
<tr>
<td>EP2</td>
<td>catalog no. 101770</td>
<td>Cayman Chemicals, MI, USA</td>
<td>IgG against human EP2, C-terminal amino acids 335-358</td>
<td>1:200</td>
<td>rabbit polyclonal</td>
</tr>
<tr>
<td>EP4</td>
<td>catalog no. 101775</td>
<td>Cayman Chemicals, MI, USA</td>
<td>IgG against human EP4, C-terminal amino acids 459-488</td>
<td>1:100</td>
<td>rabbit polyclonal</td>
</tr>
<tr>
<td>Isotype control</td>
<td>IgG</td>
<td>Vector Laboratories Inc., Burlingame, CA, USA</td>
<td>-</td>
<td>Same protein concentration as primary antibody</td>
<td>mouse</td>
</tr>
<tr>
<td>Isotype control</td>
<td>IgG</td>
<td>Vector Laboratories Inc., Burlingame, CA, USA</td>
<td>-</td>
<td>Same protein concentration as primary antibody</td>
<td>rabbit</td>
</tr>
<tr>
<td>Isotype control</td>
<td>IgG</td>
<td>Vector Laboratories Inc., Burlingame, CA, USA</td>
<td>-</td>
<td>Same protein concentration as primary antibody</td>
<td>goat</td>
</tr>
<tr>
<td>Isotype control</td>
<td>IgG</td>
<td>Vector Laboratories Inc., Burlingame, CA, USA</td>
<td>-</td>
<td>Same protein concentration as primary antibody</td>
<td>guinea pig</td>
</tr>
</tbody>
</table>