Header

UZH-Logo

Maintenance Infos

Biometric approximation of diaphragmatic contractility during sustained hyperpnea


Kabitz, Hans-Joachim; Walker, David Johannes; Schwoerer, Anja; Schlager, Daniel; Walterspacher, Stephan; Storre, Jan Hendrik; Roecker, Kai; Windisch, Wolfram; Vergès, Samuel; Spengler, Christina M (2011). Biometric approximation of diaphragmatic contractility during sustained hyperpnea. Respiratory Physiology & Neurobiology, 176(3):90-97.

Abstract

Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.

Abstract

Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.

Statistics

Citations

2 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:German
Date:2011
Deposited On:14 May 2014 08:42
Last Modified:05 Apr 2016 17:49
Publisher:Elsevier
ISSN:1569-9048
Publisher DOI:https://doi.org/10.1016/j.resp.2011.01.011
PubMed ID:21295161

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations