Header

UZH-Logo

Maintenance Infos

In vivo monitoring the fate of Cy5.5-Tat labeled T lymphocytes by quantitative near-infrared fluorescence imaging during acute brain inflammation in a rat model of experimental autoimmune encephalomyelitis


Berger, Cedric; Gremlich, Hans-Ulrich; Schmidt, Philipp; Cannet, Catherine; Kneuer, Rainer; Hiestand, Peter; Rausch, Martin; Rudin, Markus (2007). In vivo monitoring the fate of Cy5.5-Tat labeled T lymphocytes by quantitative near-infrared fluorescence imaging during acute brain inflammation in a rat model of experimental autoimmune encephalomyelitis. Journal of Immunological Methods, 323(1):65-77.

Abstract

T cells and macrophages directed against myelin proteins orchestrate the inflammation process in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). So far, assessment of macrophages infiltration or structural alterations has been achieved by in vivo imaging. In this work, we show the infiltration of Cy5.5-labeled T lymphocytes into the brains of EAE rats by reflectance near-infrared fluorescence imaging. T lymphocytes were labeled with Cy5.5-Tat and administered intravenously to naïve or EAE animals. The highest fluorescence signal was observed for EAE animals, which received myelin-activated T cells during the acute phase of the disease. The temporal profile of fluorescence in this group paralleled the pattern of neurological impairment during the acute phase, the remittance and first relapses of EAE. No disease specific fluorescence pattern was observed for EAE animals, which received naïve T cells. However, uptake of Cy5.5-Tat by scavenger cells (e.g. macrophages) following death of labeled T cells in vivo prevents prolonged longitudinal studies. Our work demonstrates that Cy5.5-Tat labeling of T cells is suitable for in vivo fluorescence imaging of inflammation initiation in the EAE model. This approach may particularly be useful for evaluation of novel anti-inflammatory therapies.

Abstract

T cells and macrophages directed against myelin proteins orchestrate the inflammation process in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). So far, assessment of macrophages infiltration or structural alterations has been achieved by in vivo imaging. In this work, we show the infiltration of Cy5.5-labeled T lymphocytes into the brains of EAE rats by reflectance near-infrared fluorescence imaging. T lymphocytes were labeled with Cy5.5-Tat and administered intravenously to naïve or EAE animals. The highest fluorescence signal was observed for EAE animals, which received myelin-activated T cells during the acute phase of the disease. The temporal profile of fluorescence in this group paralleled the pattern of neurological impairment during the acute phase, the remittance and first relapses of EAE. No disease specific fluorescence pattern was observed for EAE animals, which received naïve T cells. However, uptake of Cy5.5-Tat by scavenger cells (e.g. macrophages) following death of labeled T cells in vivo prevents prolonged longitudinal studies. Our work demonstrates that Cy5.5-Tat labeling of T cells is suitable for in vivo fluorescence imaging of inflammation initiation in the EAE model. This approach may particularly be useful for evaluation of novel anti-inflammatory therapies.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
9 citations in Scopus®
9 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2007
Deposited On:28 Apr 2014 09:17
Last Modified:18 Feb 2018 13:13
Publisher:Elsevier
ISSN:0022-1759
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.jim.2007.02.009
PubMed ID:17433359

Download

Full text not available from this repository.
View at publisher

Get full-text in a library