Header

UZH-Logo

Maintenance Infos

Correlation analyses between volatiles and glucosinolates show no evidence for chemical defense signaling in Brassica rapa


Schiestl, Florian P (2014). Correlation analyses between volatiles and glucosinolates show no evidence for chemical defense signaling in Brassica rapa. Frontiers in Ecology and Evolution:2:10.

Abstract

Positive correlations between volatile organic compounds (VOCs) and defense chemicals indicate signaling of defense status. Such aposematic signaling has been hypothesized to be widespread in plants, however, it has up to now only been shown for visual signals. Correlations between identical compounds in different plant tissues, on the other hand, can be informative about the (co-)regulation of their biosynthesis or emission. Here I use Brassica rapa to investigate (1) correlations between identical metabolites (volatiles, glucosinolates) in leaf and flower tissue, and (2) correlations between volatiles and glucosinolates in the same plant organs (flowers and leaves). Whereas the amounts of many glucosinolates were positively correlated in leaves and flower tissue, identical leaf, and floral VOCs showed no such correlations, indicating independent regulation of emission. None of the leaf or flower volatiles showed positive correlations with the two major glucosinolates (gluconapin, glucobrassicanapin) or the sum of all glucosinolates in either leaves or flowers. Some VOCs, however, showed positive correlations with minor glucosinolates which, however, represented less than one percent of the total amounts of glucosinolates. Some leaf monoterpenes showed negative associations with gluconapin. The lack of consistent positive correlations between VOCs and major defense compounds suggests that plants do not chemically signal their defense status. This could be adaptive as it may avoid eavesdropping by specialist herbivores to locate their host plants. Negative correlations likely indicate chemical trade-offs in the synthesis of secondary metabolites.

Abstract

Positive correlations between volatile organic compounds (VOCs) and defense chemicals indicate signaling of defense status. Such aposematic signaling has been hypothesized to be widespread in plants, however, it has up to now only been shown for visual signals. Correlations between identical compounds in different plant tissues, on the other hand, can be informative about the (co-)regulation of their biosynthesis or emission. Here I use Brassica rapa to investigate (1) correlations between identical metabolites (volatiles, glucosinolates) in leaf and flower tissue, and (2) correlations between volatiles and glucosinolates in the same plant organs (flowers and leaves). Whereas the amounts of many glucosinolates were positively correlated in leaves and flower tissue, identical leaf, and floral VOCs showed no such correlations, indicating independent regulation of emission. None of the leaf or flower volatiles showed positive correlations with the two major glucosinolates (gluconapin, glucobrassicanapin) or the sum of all glucosinolates in either leaves or flowers. Some VOCs, however, showed positive correlations with minor glucosinolates which, however, represented less than one percent of the total amounts of glucosinolates. Some leaf monoterpenes showed negative associations with gluconapin. The lack of consistent positive correlations between VOCs and major defense compounds suggests that plants do not chemically signal their defense status. This could be adaptive as it may avoid eavesdropping by specialist herbivores to locate their host plants. Negative correlations likely indicate chemical trade-offs in the synthesis of secondary metabolites.

Statistics

Altmetrics

Downloads

61 downloads since deposited on 22 May 2014
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:22 May 2014 14:11
Last Modified:06 Aug 2017 00:43
Publisher:Frontiers Research Foundation
ISSN:2296-701X
Publisher DOI:https://doi.org/10.3389/fevo.2014.00010

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 952kB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)