Header

UZH-Logo

Maintenance Infos

Alien interference: disruption of infochemical networks by invasive insect herbivores


Desurmont, Gaylord A; Harvey, Jeff; van Dam, Nicole M; Cristescu, Simona M; Schiestl, Florian P; Cozzolino, Salvatore; Anderson, Peter; Larsson, Mattias C; Kindlmann, Pavel; Danner, Holger; Turlings, Ted C J (2014). Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant, Cell & Environment, 37(8):1854-1865.

Abstract

Insect herbivores trigger various biochemical changes in plants, and as a consequence, affect other organisms that are associated with these plants. Such plant-mediated indirect effects often involve herbivore-induced plant volatiles (HIPVs) that can be used as cues for foraging herbivores and their natural enemies, and are also known to affect pollinator attraction. In tightly co-evolved systems, the different trophic levels are expected to display adaptive response to changes in HIPVs caused by native herbivores. But what if a new herbivore invades such a system? Current literature suggests that exotic herbivores have the potential to affect HIPV production, and that plant responses to novel herbivores are likely to depend on phylogenetic relatedness between the invader and the native species. Here we review the different ways exotic herbivores can disrupt chemically mediated interactions between plants and the key users of HIPVs: herbivores, pollinators, and members of the third (i.e. predators and parasitoids) and fourth (i.e. hyperparasitoids) trophic levels. Current theory on insect invasions needs to consider that disruptive effects of invaders on infochemical networks can have a short-term impact on the population dynamics of native insects and plants, as well as exerting potentially negative consequences for the functioning of native ecosystems.

Abstract

Insect herbivores trigger various biochemical changes in plants, and as a consequence, affect other organisms that are associated with these plants. Such plant-mediated indirect effects often involve herbivore-induced plant volatiles (HIPVs) that can be used as cues for foraging herbivores and their natural enemies, and are also known to affect pollinator attraction. In tightly co-evolved systems, the different trophic levels are expected to display adaptive response to changes in HIPVs caused by native herbivores. But what if a new herbivore invades such a system? Current literature suggests that exotic herbivores have the potential to affect HIPV production, and that plant responses to novel herbivores are likely to depend on phylogenetic relatedness between the invader and the native species. Here we review the different ways exotic herbivores can disrupt chemically mediated interactions between plants and the key users of HIPVs: herbivores, pollinators, and members of the third (i.e. predators and parasitoids) and fourth (i.e. hyperparasitoids) trophic levels. Current theory on insect invasions needs to consider that disruptive effects of invaders on infochemical networks can have a short-term impact on the population dynamics of native insects and plants, as well as exerting potentially negative consequences for the functioning of native ecosystems.

Statistics

Citations

20 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

46 downloads since deposited on 22 May 2014
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:22 May 2014 13:27
Last Modified:05 Apr 2016 17:53
Publisher:Wiley-Blackwell
ISSN:0140-7791
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/pce.12333
PubMed ID:24689553

Download

Download PDF  'Alien interference: disruption of infochemical networks by invasive insect herbivores'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher