Header

UZH-Logo

Maintenance Infos

Beyond cash-additive risk measures: When changing the numeraire fails


Farkas, Walter; Koch-Medina, Pablo; Munari, Cosimo-Andrea (2013). Beyond cash-additive risk measures: When changing the numeraire fails. Finance and Stochastics, 18(1):145-173.

Abstract

We discuss risk measures representing the minimum amount of capital a financial institution needs to raise and invest in a pre-specified eligible asset to ensure it is adequately capitalized. Most of the literature has focused on cash-additive risk measures, for which the eligible asset is a risk-free bond, on the grounds that the general case can be reduced to the cash-additive case by a change of numéraire. However, discounting does not work in all financially relevant situations, especially when the eligible asset is a defaultable bond. In this paper, we fill this gap by allowing general eligible assets. We provide a variety of finiteness and continuity results for the corresponding risk measures and apply them to risk measures based on value-at-risk and tail value-at-risk on L p spaces, as well as to shortfall risk measures on Orlicz spaces. We pay special attention to the property of cash subadditivity, which has been recently proposed as an alternative to cash additivity to deal with defaultable bonds. For important examples, we provide characterizations of cash subadditivity and show that when the eligible asset is a defaultable bond, cash subadditivity is the exception rather than the rule. Finally, we consider the situation where the eligible asset is not liquidly traded and the pricing rule is no longer linear. We establish when the resulting risk measures are quasiconvex and show that cash subadditivity is only compatible with continuous pricing rules.

Abstract

We discuss risk measures representing the minimum amount of capital a financial institution needs to raise and invest in a pre-specified eligible asset to ensure it is adequately capitalized. Most of the literature has focused on cash-additive risk measures, for which the eligible asset is a risk-free bond, on the grounds that the general case can be reduced to the cash-additive case by a change of numéraire. However, discounting does not work in all financially relevant situations, especially when the eligible asset is a defaultable bond. In this paper, we fill this gap by allowing general eligible assets. We provide a variety of finiteness and continuity results for the corresponding risk measures and apply them to risk measures based on value-at-risk and tail value-at-risk on L p spaces, as well as to shortfall risk measures on Orlicz spaces. We pay special attention to the property of cash subadditivity, which has been recently proposed as an alternative to cash additivity to deal with defaultable bonds. For important examples, we provide characterizations of cash subadditivity and show that when the eligible asset is a defaultable bond, cash subadditivity is the exception rather than the rule. Finally, we consider the situation where the eligible asset is not liquidly traded and the pricing rule is no longer linear. We establish when the resulting risk measures are quasiconvex and show that cash subadditivity is only compatible with continuous pricing rules.

Statistics

Citations

5 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Banking and Finance
Dewey Decimal Classification:330 Economics
Language:English
Date:November 2013
Deposited On:23 Jun 2014 14:09
Last Modified:08 Dec 2017 06:06
Publisher:Springer
ISSN:0949-2984
Free access at:Related URL. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s00780-013-0220-9
Official URL:http://link.springer.com/article/10.1007%2Fs00780-013-0220-9
Related URLs:http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2053654
Other Identification Number:merlin-id:7778

Download

Full text not available from this repository.
View at publisher