Header

UZH-Logo

Maintenance Infos

Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo.


Mosimann, C; Hausmann, G; Basler, K (2006). Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell, 125(2):327-341.

Abstract

The Wnt pathway controls cell fates, tissue homeostasis, and cancer. Its activation entails the association of beta-catenin with nuclear TCF/LEF proteins and results in transcriptional activation of target genes. The mechanism by which nuclear beta-catenin controls transcription is largely unknown. Here we genetically identify a novel Wnt/Wg pathway component that mediates the transcriptional outputs of beta-catenin/Armadillo. We show that Drosophila Hyrax and its human ortholog, Parafibromin, components of the Polymerase-Associated Factor 1 (PAF1) complex, are required for nuclear transduction of the Wnt/Wg signal and bind directly to the C-terminal region of beta-catenin/Armadillo. Moreover, we find that the transactivation potential of Parafibromin/Hyrax depends on the recruitment of Pygopus to beta-catenin/Armadillo. Our results assign to the tumor suppressor Parafibromin an unexpected role in Wnt signaling and provide a molecular mechanism for Wnt target gene control, in which the nuclear Wnt signaling complex directly engages the PAF1 complex, thereby controlling transcriptional initiation and elongation by RNA Polymerase II.

Abstract

The Wnt pathway controls cell fates, tissue homeostasis, and cancer. Its activation entails the association of beta-catenin with nuclear TCF/LEF proteins and results in transcriptional activation of target genes. The mechanism by which nuclear beta-catenin controls transcription is largely unknown. Here we genetically identify a novel Wnt/Wg pathway component that mediates the transcriptional outputs of beta-catenin/Armadillo. We show that Drosophila Hyrax and its human ortholog, Parafibromin, components of the Polymerase-Associated Factor 1 (PAF1) complex, are required for nuclear transduction of the Wnt/Wg signal and bind directly to the C-terminal region of beta-catenin/Armadillo. Moreover, we find that the transactivation potential of Parafibromin/Hyrax depends on the recruitment of Pygopus to beta-catenin/Armadillo. Our results assign to the tumor suppressor Parafibromin an unexpected role in Wnt signaling and provide a molecular mechanism for Wnt target gene control, in which the nuclear Wnt signaling complex directly engages the PAF1 complex, thereby controlling transcriptional initiation and elongation by RNA Polymerase II.

Statistics

Citations

196 citations in Web of Science®
201 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:21 April 2006
Deposited On:11 Feb 2008 12:19
Last Modified:05 Apr 2016 12:16
Publisher:Elsevier
ISSN:0092-8674
Publisher DOI:https://doi.org/10.1016/j.cell.2006.01.053
PubMed ID:16630820

Download

Full text not available from this repository.
View at publisher