Header

UZH-Logo

Maintenance Infos

Power law approximations of movement network data for modeling infectious disease spread


Geilhufe, Marc; Held, Leonhard; Skrøvseth, Stein Olav; Simonsen, Gunnar S; Godtliebsen, Fred (2014). Power law approximations of movement network data for modeling infectious disease spread. Biometrical journal. Biometrische Zeitschrift, 56(3):363-382.

Abstract

Globalization and increased mobility of individuals enable person-to-person transmitted infectious diseases to spread faster to distant places around the world, making good models for the spread increasingly important. We study the spatiotemporal pattern of spread in the remotely located and sparsely populated region of North Norway in various models with fixed, seasonal, and random effects. The models are applied to influenza A counts using data from positive microbiology laboratory tests as proxy for the underlying disease incidence. Human travel patterns with local air, road, and sea traffic data are incorporated as well as power law approximations thereof, both with quasi-Poisson regression and based on the adjacency structure of the relevant municipalities. We investigate model extensions using information about the proportion of positive laboratory tests, data on immigration from outside North Norway and by connecting population to the movement network. Furthermore, we perform two separate analyses for nonadults and adults as children are an important driver for influenza A. Comparisons of one-step-ahead predictions generally yield better or comparable results using power law approximations.

Abstract

Globalization and increased mobility of individuals enable person-to-person transmitted infectious diseases to spread faster to distant places around the world, making good models for the spread increasingly important. We study the spatiotemporal pattern of spread in the remotely located and sparsely populated region of North Norway in various models with fixed, seasonal, and random effects. The models are applied to influenza A counts using data from positive microbiology laboratory tests as proxy for the underlying disease incidence. Human travel patterns with local air, road, and sea traffic data are incorporated as well as power law approximations thereof, both with quasi-Poisson regression and based on the adjacency structure of the relevant municipalities. We investigate model extensions using information about the proportion of positive laboratory tests, data on immigration from outside North Norway and by connecting population to the movement network. Furthermore, we perform two separate analyses for nonadults and adults as children are an important driver for influenza A. Comparisons of one-step-ahead predictions generally yield better or comparable results using power law approximations.

Statistics

Citations

7 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2014
Deposited On:14 Jul 2014 06:39
Last Modified:08 Dec 2017 06:25
Publisher:Wiley-VCH Verlag Berlin
ISSN:0323-3847
Publisher DOI:https://doi.org/10.1002/bimj.201200262
PubMed ID:24843881

Download

Full text not available from this repository.
View at publisher