Header

UZH-Logo

Maintenance Infos

Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells


Klawitter, Marina; Hakozaki, Michiyuki; Kobayashi, Hiroshi; Krupkova, Olga; Quero, Lilian; Ospelt, Caroline; Gay, Steffen; Hausmann, Oliver; Liebscher, Thomas; Meier, Ullrich; Sekiguchi, Miho; Konno, Shin-Ichi; Boos, Norbert; Ferguson, Stephen J; Wuertz, Karin (2014). Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. European Spine Journal, 23(9):1878-1891.

Abstract

PURPOSE
Although inflammatory processes play an essential role in painful intervertebral disc (IVD) degeneration, the underlying regulatory mechanisms are not well understood. This study was designed to investigate the expression, regulation and importance of specific toll-like receptors (TLRs)-which have been shown to play an essential role e.g. in osteoarthritis-during degenerative disc disease.
METHODS
The expression of TLRs in human IVDs was measured in isolated cells as well as in normal or degenerated IVD tissue. The role of IL-1β or TNF-α in regulating TLRs (expression/activation) as well as in regulating activity of down-stream pathways (NF-κB) and expression of inflammation-related genes (IL-6, IL-8, HSP60, HSP70, HMGB1) was analyzed.
RESULTS
Expression of TLR1/2/3/4/5/6/9/10 was detected in isolated human IVD cells, with TLR1/2/4/6 being dependent on the degree of IVD degeneration. Stimulation with IL-1β or TNF-α moderately increased TLR1/TLR4 mRNA expression (TNF-α only), and strongly increased TLR2 mRNA expression (IL-1β/TNF-α), with the latter being confirmed on the protein level. Stimulation with IL-1β, TNF-α or Pam3CSK4 (a TLR2-ligand) stimulated IL-6 and IL-8, which was inhibited by a TLR2 neutralizing antibody for Pam3CSK4; IL-1β and TNF-α caused NF-κB activation. HSP60, HSP70 and HMGB1 did not increase IL-6 or IL-8 and were not regulated by IL-1β/TNF-α.
CONCLUSION
We provide evidence that several TLRs are expressed in human IVD cells, with TLR2 possibly playing the most crucial role. As TLRs mediate catabolic and inflammatory processes, increased levels of TLRs may lead to aggravated disc degeneration, chronic inflammation and pain development. Especially with the identification of more endogenous TLR ligands, targeting these receptors may hold therapeutic promise.

Abstract

PURPOSE
Although inflammatory processes play an essential role in painful intervertebral disc (IVD) degeneration, the underlying regulatory mechanisms are not well understood. This study was designed to investigate the expression, regulation and importance of specific toll-like receptors (TLRs)-which have been shown to play an essential role e.g. in osteoarthritis-during degenerative disc disease.
METHODS
The expression of TLRs in human IVDs was measured in isolated cells as well as in normal or degenerated IVD tissue. The role of IL-1β or TNF-α in regulating TLRs (expression/activation) as well as in regulating activity of down-stream pathways (NF-κB) and expression of inflammation-related genes (IL-6, IL-8, HSP60, HSP70, HMGB1) was analyzed.
RESULTS
Expression of TLR1/2/3/4/5/6/9/10 was detected in isolated human IVD cells, with TLR1/2/4/6 being dependent on the degree of IVD degeneration. Stimulation with IL-1β or TNF-α moderately increased TLR1/TLR4 mRNA expression (TNF-α only), and strongly increased TLR2 mRNA expression (IL-1β/TNF-α), with the latter being confirmed on the protein level. Stimulation with IL-1β, TNF-α or Pam3CSK4 (a TLR2-ligand) stimulated IL-6 and IL-8, which was inhibited by a TLR2 neutralizing antibody for Pam3CSK4; IL-1β and TNF-α caused NF-κB activation. HSP60, HSP70 and HMGB1 did not increase IL-6 or IL-8 and were not regulated by IL-1β/TNF-α.
CONCLUSION
We provide evidence that several TLRs are expressed in human IVD cells, with TLR2 possibly playing the most crucial role. As TLRs mediate catabolic and inflammatory processes, increased levels of TLRs may lead to aggravated disc degeneration, chronic inflammation and pain development. Especially with the identification of more endogenous TLR ligands, targeting these receptors may hold therapeutic promise.

Statistics

Citations

18 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:5 July 2014
Deposited On:23 Jul 2014 08:40
Last Modified:05 Apr 2016 17:59
Publisher:Springer
ISSN:0940-6719
Publisher DOI:https://doi.org/10.1007/s00586-014-3442-4
PubMed ID:24997157

Download

Full text not available from this repository.
View at publisher