Header

UZH-Logo

Maintenance Infos

Cosmological parameter determination in free-form strong gravitational lens modelling


Lubini, M; Sereno, M; Coles, J; Jetzer, P; Saha, P (2014). Cosmological parameter determination in free-form strong gravitational lens modelling. Monthly Notices of the Royal Astronomical Society, 437(3):2461-2470.

Abstract

We develop a novel statistical strong-lensing approach to probe the cosmological parameters by exploiting multiple redshift image systems behind galaxies or galaxy clusters. The method relies on free-form mass inversion of strong lenses and does not need any additional information other than gravitational lensing. Since in free-form lensing the solution space is a high-dimensional convex polytope, we consider Bayesian model comparison analysis to infer the cosmological parameters. The volume of the solution space is taken as a tracer of the probability of the underlying cosmological assumption. In contrast to parametric mass inversions, our method accounts for the mass-sheet degeneracy, which implies a degeneracy between the steepness of the profile and the cosmological parameters. Parametric models typically break this degeneracy, introducing hidden priors to the analysis that contaminate the inference of the parameters. We test our method with synthetic lenses, showing that it is able to infer the assumed cosmological parameters. Applied to the Cluster Lensing And Supernova survey with Hubble (CLASH) clusters, the method might be competitive with other probes.

Abstract

We develop a novel statistical strong-lensing approach to probe the cosmological parameters by exploiting multiple redshift image systems behind galaxies or galaxy clusters. The method relies on free-form mass inversion of strong lenses and does not need any additional information other than gravitational lensing. Since in free-form lensing the solution space is a high-dimensional convex polytope, we consider Bayesian model comparison analysis to infer the cosmological parameters. The volume of the solution space is taken as a tracer of the probability of the underlying cosmological assumption. In contrast to parametric mass inversions, our method accounts for the mass-sheet degeneracy, which implies a degeneracy between the steepness of the profile and the cosmological parameters. Parametric models typically break this degeneracy, introducing hidden priors to the analysis that contaminate the inference of the parameters. We test our method with synthetic lenses, showing that it is able to infer the assumed cosmological parameters. Applied to the Cluster Lensing And Supernova survey with Hubble (CLASH) clusters, the method might be competitive with other probes.

Statistics

Citations

12 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 13 Aug 2014
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:January 2014
Deposited On:13 Aug 2014 15:08
Last Modified:08 Dec 2017 06:53
Publisher:Oxford University Press
ISSN:0035-8711
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stt2057

Download

Download PDF  'Cosmological parameter determination in free-form strong gravitational lens modelling'.
Preview
Content: Published Version
Filetype: PDF
Size: 540kB
View at publisher