Header

UZH-Logo

Maintenance Infos

Intensity interferometry with more than two detectors?


Malvimat, V; Wucknitz, O; Saha, P (2014). Intensity interferometry with more than two detectors? Monthly Notices of the Royal Astronomical Society, 437(1):798-803.

Abstract

The original intensity interferometers were instruments built in the 1950s and 1960s by Hanbury Brown and collaborators, achieving milliarcsec resolutions in visible light without optical-quality mirrors. They exploited a then-novel physical effect, nowadays known as HBT correlation after the experiments of Hanbury Brown and Twiss, and considered fundamental in quantum optics. Now a new generation of intensity interferometers is being designed, raising the possibility of measuring intensity correlations with three or more detectors. Quantum optics predicts two interesting features in many-detector HBT: (i) the signal contains spatial information about the source (such as the bispectrum or closure phase) not present in standard HBT and (ii) correlation increases combinatorially with the number of detectors. The signal-to-noise ratio (SNR) depends crucially on the number of photons - in practice always ≪1 - detected per coherence time. A simple SNR formula is derived for thermal sources, indicating that three-detector HBT is feasible for bright stars. The many-detector enhancement of HBT would be much more difficult to measure, but seems plausible for bright masers.

Abstract

The original intensity interferometers were instruments built in the 1950s and 1960s by Hanbury Brown and collaborators, achieving milliarcsec resolutions in visible light without optical-quality mirrors. They exploited a then-novel physical effect, nowadays known as HBT correlation after the experiments of Hanbury Brown and Twiss, and considered fundamental in quantum optics. Now a new generation of intensity interferometers is being designed, raising the possibility of measuring intensity correlations with three or more detectors. Quantum optics predicts two interesting features in many-detector HBT: (i) the signal contains spatial information about the source (such as the bispectrum or closure phase) not present in standard HBT and (ii) correlation increases combinatorially with the number of detectors. The signal-to-noise ratio (SNR) depends crucially on the number of photons - in practice always ≪1 - detected per coherence time. A simple SNR formula is derived for thermal sources, indicating that three-detector HBT is feasible for bright stars. The many-detector enhancement of HBT would be much more difficult to measure, but seems plausible for bright masers.

Statistics

Citations

7 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

35 downloads since deposited on 13 Aug 2014
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:January 2014
Deposited On:13 Aug 2014 15:09
Last Modified:27 Apr 2017 21:04
Publisher:Oxford University Press
ISSN:0035-8711
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stt1934

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 302kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations