Header

UZH-Logo

Maintenance Infos

Light modulation of human sleep depends on a polymorphism in the clock gene Period3


Chellappa, Sarah L; Viola, Antoine U; Schmidt, Christina; Bachmann, Valérie; Gabel, Virginie; Maire, Micheline; Reichert, Carolin F; Valomon, Amandine; Landolt, Hans-Peter; Cajochen, Christian (2014). Light modulation of human sleep depends on a polymorphism in the clock gene Period3. Behavioural Brain Research, 271:23-29.

Abstract

Non-image-forming (NIF) responses to light powerfully modulate human physiology. However, it remains scarcely understood how NIF responses to light modulate human sleep and its EEG hallmarks, and if there are differences across individuals. Here we investigated NIF responses to light on sleep in individuals genotyped for the PERIOD3 (PER3) variable-number tandem-repeat (VNTR) polymorphism. Eighteen healthy young men (20-28 years; mean±SEM: 25.9±1.2) homozygous for the PER3 polymorphism were matched by age, body-mass index, and ethnicity. The study protocol comprised a balanced cross-over design during the winter, during which participants were exposed to either light of 40lx at 6500K (blue-enriched) or light at 2500K (non-blue enriched), during 2h in the evening. Compared to light at 2500K, light at 6500K induced a significant increase in all-night NREM sleep slow-wave activity (SWA: 1.0-4.5Hz) in the occipital cortex for PER3(5/5) individuals, but not for PER3(4/4) volunteers. Dynamics of SWA across sleep cycles revealed increased occipital NREM sleep SWA for virtuallyall sleep episode only for PER3(5/5) individuals. Furthermore, they experienced light at 6500K as significantly brighter. Intriguingly, this subjective perception of brightness significantly predicted their increased occipital SWA throughout the sleep episode. Our data indicate that humans homozygous for the PER3(5/5) allele are more sensitive to NIF light effects, as indexed by specific changes in sleep EEG activity. Ultimately, individual differences in NIF light responses on sleep may depend on a clock gene polymorphism involved in sleep-wake regulation.

Abstract

Non-image-forming (NIF) responses to light powerfully modulate human physiology. However, it remains scarcely understood how NIF responses to light modulate human sleep and its EEG hallmarks, and if there are differences across individuals. Here we investigated NIF responses to light on sleep in individuals genotyped for the PERIOD3 (PER3) variable-number tandem-repeat (VNTR) polymorphism. Eighteen healthy young men (20-28 years; mean±SEM: 25.9±1.2) homozygous for the PER3 polymorphism were matched by age, body-mass index, and ethnicity. The study protocol comprised a balanced cross-over design during the winter, during which participants were exposed to either light of 40lx at 6500K (blue-enriched) or light at 2500K (non-blue enriched), during 2h in the evening. Compared to light at 2500K, light at 6500K induced a significant increase in all-night NREM sleep slow-wave activity (SWA: 1.0-4.5Hz) in the occipital cortex for PER3(5/5) individuals, but not for PER3(4/4) volunteers. Dynamics of SWA across sleep cycles revealed increased occipital NREM sleep SWA for virtuallyall sleep episode only for PER3(5/5) individuals. Furthermore, they experienced light at 6500K as significantly brighter. Intriguingly, this subjective perception of brightness significantly predicted their increased occipital SWA throughout the sleep episode. Our data indicate that humans homozygous for the PER3(5/5) allele are more sensitive to NIF light effects, as indexed by specific changes in sleep EEG activity. Ultimately, individual differences in NIF light responses on sleep may depend on a clock gene polymorphism involved in sleep-wake regulation.

Statistics

Citations

12 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 20 Aug 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 September 2014
Deposited On:20 Aug 2014 13:15
Last Modified:05 Apr 2016 18:20
Publisher:Elsevier
ISSN:0166-4328
Publisher DOI:https://doi.org/10.1016/j.bbr.2014.05.050
PubMed ID:24893318

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher