Header

UZH-Logo

Maintenance Infos

Estimation of a Predictor’s Importance by Random Forests When There Is Missing Data : RISK Prediction in Liver Surgery using Laboratory Data


Hapfelmeier, Alexander; Hothorn, Torsten; Riediger, Carina; Ulm, Kurt (2014). Estimation of a Predictor’s Importance by Random Forests When There Is Missing Data : RISK Prediction in Liver Surgery using Laboratory Data. International Journal of Biostatistics, 10(2):165-183.

Statistics

Citations

1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 26 Aug 2014
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2014
Deposited On:26 Aug 2014 14:51
Last Modified:11 Dec 2017 10:39
Publisher:De Gruyter
ISSN:1557-4679
Publisher DOI:https://doi.org/10.1515/ijb-2013-0038
PubMed ID:24914728

Download

Download PDF  'Estimation of a Predictor’s Importance by Random Forests When There Is Missing Data : RISK Prediction in Liver Surgery using Laboratory Data'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher