Header

UZH-Logo

Maintenance Infos

An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds


Sinicropi, A; Martin, E; Ryazantsev, M; Helbing, J; Briand, J; Sharma, D; Léonard, J; Haacke, S; Cannizzo, A; Chergui, M; Zanirato, V; Fusi, S; Santoro, F; Basosi, R; Ferré, N; Olivucci, M (2008). An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 105(46):17642-17647.

Abstract

Single molecules that act as light-energy transducers (e.g., converting the energy of a photon into atomic-level mechanical motion) are examples of minimal molecular devices. Here, we focus on a molecular switch designed by merging a conformationally locked diarylidene skeleton with a retinal-like Schiff base and capable of mimicking, in solution, different aspects of the transduction of the visual pigment Rhodopsin. Complementary ab initio multiconfigurational quantum chemistry-based computations and time-resolved spectroscopy are used to follow the light-induced isomerization of the switch in methanol. The results show that, similar to rhodopsin, the isomerization occurs on a 0.3-ps time scale and is followed by <10-ps cooling and solvation. The entire (2-photon-powered) switch cycle was traced by following the evolution of its infrared spectrum. These measurements indicate that a full cycle can be completed within 20 ps.

Abstract

Single molecules that act as light-energy transducers (e.g., converting the energy of a photon into atomic-level mechanical motion) are examples of minimal molecular devices. Here, we focus on a molecular switch designed by merging a conformationally locked diarylidene skeleton with a retinal-like Schiff base and capable of mimicking, in solution, different aspects of the transduction of the visual pigment Rhodopsin. Complementary ab initio multiconfigurational quantum chemistry-based computations and time-resolved spectroscopy are used to follow the light-induced isomerization of the switch in methanol. The results show that, similar to rhodopsin, the isomerization occurs on a 0.3-ps time scale and is followed by <10-ps cooling and solvation. The entire (2-photon-powered) switch cycle was traced by following the evolution of its infrared spectrum. These measurements indicate that a full cycle can be completed within 20 ps.

Statistics

Citations

58 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

19 downloads since deposited on 22 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2008
Deposited On:22 Jan 2009 14:07
Last Modified:05 Apr 2016 12:48
Publisher:National Academy of Sciences
ISSN:0027-8424
Additional Information:Copyright: National Academy of Sciences USA
Publisher DOI:https://doi.org/10.1073/pnas.0802376105
PubMed ID:19004797

Download