Header

UZH-Logo

Maintenance Infos

Bis(dipyridophenazine)(2-(2'-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) hexafluorophosphate: a lesson in stubbornness


Joshi, Tanmaya; Pierroz, Vanessa; Ferrari, Stefano; Gasser, Gilles (2014). Bis(dipyridophenazine)(2-(2'-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) hexafluorophosphate: a lesson in stubbornness. ChemMedChem, 9(7):1419-1427.

Abstract

Ruthenium complexes are currently considered to be among the most promising alternatives to platinum anticancer drugs. In this work, thirteen structural analogues and organelle/receptor-targeting peptide bioconjugates of a cytotoxic bis(dppz)-Ru(II) complex [Ru(dppz)2 (CppH)](PF6 )2 (1) were prepared, characterized, and assessed for their cytotoxicity and cellular localization (CppH=2-(2'-pyridyl)pyrimidine-4-carboxylic acid; dppz=dipyrido[3,2-a:2',3'-c]phenazine). It was observed that structural modifications (lipophilicity, charge, and size-based) result in the cytotoxic potency of 1 being compromised. Confocal microscopy studies revealed that unlike 1, the screened complexes/bioconjugates do not have a preferential accumulation in mitochondria. The results of this important structure-activity relationship strongly support our initial hypothesis that accumulation in mitochondria is crucial for 1 to exert its cytotoxic action.

Abstract

Ruthenium complexes are currently considered to be among the most promising alternatives to platinum anticancer drugs. In this work, thirteen structural analogues and organelle/receptor-targeting peptide bioconjugates of a cytotoxic bis(dppz)-Ru(II) complex [Ru(dppz)2 (CppH)](PF6 )2 (1) were prepared, characterized, and assessed for their cytotoxicity and cellular localization (CppH=2-(2'-pyridyl)pyrimidine-4-carboxylic acid; dppz=dipyrido[3,2-a:2',3'-c]phenazine). It was observed that structural modifications (lipophilicity, charge, and size-based) result in the cytotoxic potency of 1 being compromised. Confocal microscopy studies revealed that unlike 1, the screened complexes/bioconjugates do not have a preferential accumulation in mitochondria. The results of this important structure-activity relationship strongly support our initial hypothesis that accumulation in mitochondria is crucial for 1 to exert its cytotoxic action.

Statistics

Citations

16 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 30 Sep 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:July 2014
Deposited On:30 Sep 2014 15:39
Last Modified:08 Dec 2017 07:12
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1860-7179
Publisher DOI:https://doi.org/10.1002/cmdc.201400029
PubMed ID:24591361

Download