Header

UZH-Logo

Maintenance Infos

Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks


Cannavo, Elda; Cejka, Petr (2014). Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature, 514(7520):122-125.

Abstract

To repair double-strand DNA breaks by homologous recombination, the 5'-terminated DNA strand must first be resected, which generates 3' single-stranded DNA overhangs. Genetic evidence suggests that this process is initiated by the Mre11-Rad50-Xrs2 (MRX) complex. However, its involvement was puzzling, as the complex possesses exonuclease activity with the opposite (3' to 5') polarity from that required for homologous recombination. Consequently, a bidirectional model has been proposed whereby dsDNA is first incised endonucleolytically and MRX then proceeds back to the dsDNA end using its 3' to 5' exonuclease. The endonuclease creates entry sites for Sgs1-Dna2 and/or Exo1, which then carry out long-range resection in the 5' to 3' direction. However, the identity of the endonuclease remained unclear. Using purified Saccharomyces cerevisiae proteins, we show that Sae2 promotes dsDNA-specific endonuclease activity by the Mre11 subunit within the MRX complex. The endonuclease preferentially cleaves the 5'-terminated dsDNA strand, which explains the polarity paradox. The dsDNA end clipping is strongly stimulated by protein blocks at the DNA end, and requires the ATPase activity of Rad50 and physical interactions between MRX and Sae2. Our results suggest that MRX initiates dsDNA break processing by dsDNA endonuclease rather than exonuclease activity, and that Sae2 is the key regulator of this process. These findings demonstrate a probable mechanism for the initiation of dsDNA break processing in both vegetative and meiotic cells.

Abstract

To repair double-strand DNA breaks by homologous recombination, the 5'-terminated DNA strand must first be resected, which generates 3' single-stranded DNA overhangs. Genetic evidence suggests that this process is initiated by the Mre11-Rad50-Xrs2 (MRX) complex. However, its involvement was puzzling, as the complex possesses exonuclease activity with the opposite (3' to 5') polarity from that required for homologous recombination. Consequently, a bidirectional model has been proposed whereby dsDNA is first incised endonucleolytically and MRX then proceeds back to the dsDNA end using its 3' to 5' exonuclease. The endonuclease creates entry sites for Sgs1-Dna2 and/or Exo1, which then carry out long-range resection in the 5' to 3' direction. However, the identity of the endonuclease remained unclear. Using purified Saccharomyces cerevisiae proteins, we show that Sae2 promotes dsDNA-specific endonuclease activity by the Mre11 subunit within the MRX complex. The endonuclease preferentially cleaves the 5'-terminated dsDNA strand, which explains the polarity paradox. The dsDNA end clipping is strongly stimulated by protein blocks at the DNA end, and requires the ATPase activity of Rad50 and physical interactions between MRX and Sae2. Our results suggest that MRX initiates dsDNA break processing by dsDNA endonuclease rather than exonuclease activity, and that Sae2 is the key regulator of this process. These findings demonstrate a probable mechanism for the initiation of dsDNA break processing in both vegetative and meiotic cells.

Statistics

Citations

107 citations in Web of Science®
109 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Sep 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:17 September 2014
Deposited On:30 Sep 2014 15:55
Last Modified:08 Dec 2017 07:16
Publisher:Nature Publishing Group
ISSN:0028-0836
Publisher DOI:https://doi.org/10.1038/nature13771
PubMed ID:25231868

Download