Header

UZH-Logo

Maintenance Infos

Dielectric properties of water ice, the ice Ih/XI phase transition, and an assessment of density functional theory


Schoenherr, Mandes; Slater, Ben; Hutter, Juerg; VandeVondele, Joost (2014). Dielectric properties of water ice, the ice Ih/XI phase transition, and an assessment of density functional theory. Journal of Physical Chemistry B, 118(2):590-596.

Abstract

The dielectric properties of the hydrogen disordered hexagonal phase (Ih) of water ice have been computed using density functional theory (DFT) based Monte Carlo simulations in the isobaric isothermal ensemble. Temperature dependent data yield a fit for the Curie-Weiss law of the system and hence a prediction of the temperature of the phase transition from the Ih phase to the hydrogen ordered ice XI phase. Direct simulations around the phase transition temperature confirm and refine the predicted phase transition temperatures and provide data for further properties, such as the linear thermal expansion coefficient. Results have been obtained with both hybrid and semilocal density functionals, which yields insight in the performance of the electronic structure method. In particular, the hybrid functional yields significantly more realistic dielectric constants than the semilocal variant, namely epsilon approximate to 116 as opposed to epsilon approximate to 151 at 273 K (epsilon(experiment) = 95). This can be attributed to the tendency of semilocal functionals to be biased to configurations with a large dipole moment, and their overestimation of the dipole moments of these configurations. This is also reflected in the estimates of the Ih/XI transition temperature, which is 70-80 and 90-100 K for the hybrid and semilocal functional respectively. DFT based sampling of the millions of configurations necessary for this work has been enabled by a Tree Monte Carlo algorithm, designed for massively parallel computers.

Abstract

The dielectric properties of the hydrogen disordered hexagonal phase (Ih) of water ice have been computed using density functional theory (DFT) based Monte Carlo simulations in the isobaric isothermal ensemble. Temperature dependent data yield a fit for the Curie-Weiss law of the system and hence a prediction of the temperature of the phase transition from the Ih phase to the hydrogen ordered ice XI phase. Direct simulations around the phase transition temperature confirm and refine the predicted phase transition temperatures and provide data for further properties, such as the linear thermal expansion coefficient. Results have been obtained with both hybrid and semilocal density functionals, which yields insight in the performance of the electronic structure method. In particular, the hybrid functional yields significantly more realistic dielectric constants than the semilocal variant, namely epsilon approximate to 116 as opposed to epsilon approximate to 151 at 273 K (epsilon(experiment) = 95). This can be attributed to the tendency of semilocal functionals to be biased to configurations with a large dipole moment, and their overestimation of the dipole moments of these configurations. This is also reflected in the estimates of the Ih/XI transition temperature, which is 70-80 and 90-100 K for the hybrid and semilocal functional respectively. DFT based sampling of the millions of configurations necessary for this work has been enabled by a Tree Monte Carlo algorithm, designed for massively parallel computers.

Statistics

Citations

19 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

148 downloads since deposited on 17 Oct 2014
73 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2014
Deposited On:17 Oct 2014 11:41
Last Modified:05 Apr 2016 18:23
Publisher:American Chemical Society
ISSN:1520-5207
Publisher DOI:https://doi.org/10.1021/jp4103355
PubMed ID:24392971

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 685kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations