Header

UZH-Logo

Maintenance Infos

Isolation of single mammalian cells from adherent cultures by fluidic force microscopy


Guillaume-Gentil, Orane; Zambelli, Tomaso; Vorholt, Julia A (2014). Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab on a chip, 14(2):402-414.

Abstract

The physical separation of individual cells from cell populations for single-cell analysis and proliferation is of wide interest in biology and medicine. Today, single-cell isolation is routinely applied to non-adherent cells, though its application to cells grown on a substrate remains challenging. In this report, a versatile approach for isolating single HeLa cells directly from their culture dish is presented. Fluidic force microscopy is first used to detach the targeted cell(s) via the tunable delivery of trypsin, thereby achieving cellular detachment with single-cell resolution. The cell is then trapped by the microfluidic probe via gentle aspiration, displaced with micrometric precision and either transferred onto a new substrate or deposited into a microwell. An optimised non-fouling coating ensures fully reversible cell capture and the potential for serial isolation of multiple cells with 100% successful transfer rate (n = 130) and a survival rate of greater than 95%. By providing an efficient means for isolating targeted adherent cells, the described approach offers exciting possibilities for biomedical research.

Abstract

The physical separation of individual cells from cell populations for single-cell analysis and proliferation is of wide interest in biology and medicine. Today, single-cell isolation is routinely applied to non-adherent cells, though its application to cells grown on a substrate remains challenging. In this report, a versatile approach for isolating single HeLa cells directly from their culture dish is presented. Fluidic force microscopy is first used to detach the targeted cell(s) via the tunable delivery of trypsin, thereby achieving cellular detachment with single-cell resolution. The cell is then trapped by the microfluidic probe via gentle aspiration, displaced with micrometric precision and either transferred onto a new substrate or deposited into a microwell. An optimised non-fouling coating ensures fully reversible cell capture and the potential for serial isolation of multiple cells with 100% successful transfer rate (n = 130) and a survival rate of greater than 95%. By providing an efficient means for isolating targeted adherent cells, the described approach offers exciting possibilities for biomedical research.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
17 citations in Scopus®
21 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2014
Deposited On:03 Oct 2014 14:29
Last Modified:14 Feb 2018 21:40
Publisher:RSC Publishing
ISSN:1473-0189
OA Status:Closed
Publisher DOI:https://doi.org/10.1039/C3LC51174J

Download

Full text not available from this repository.
View at publisher

Get full-text in a library