Header

UZH-Logo

Maintenance Infos

Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites


Tarle, Z; Attin, T; Marovic, D; Andermatt, L; Ristic, M; Tauböck, T T (2015). Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clinical Oral Investigations, 19(4):831-840.

Abstract

OBJECTIVES To evaluate the influence of irradiation time on degree of conversion (DC) and microhardness of high-viscosity bulk-fill resin composites in depths up to 6 mm. MATERIALS AND METHODS Four bulk-fill materials (Tetric EvoCeram Bulk Fill-TECBF; x-tra fil-XF; QuixFil-QF; SonicFill-SF) and one conventional nano-hybrid resin composite (Tetric EvoCeram-TEC) were irradiated for 10, 20, or 30 s at 1,170 mW/cm(2). DC and Knoop microhardness (KHN) were recorded after 24-h dark storage at five depths: 0.1, 2, 4, 5, and 6 mm. Data were statistically analyzed using ANOVA and Bonferroni's post-hoc test (α = 0.05). RESULTS With increasing bulk thickness, DC and KHN significantly decreased for TEC. TECBF and SF showed a significant decrease in DC and KHN at 4-mm depth after 10-s irradiation, but no decrease in DC after 30-s irradiation (p > 0.05). XF and QF demonstrated no significant DC decrease at depths up to 6 mm after irradiation of at least 20 s. At 4-mm depth, all materials tested achieved at least 80 % of their maximum DC value, irrespective of irradiation time. However, at the same depth (4 mm), only XF and QF irradiated for 30 s achieved at least 80 % of their maximum KHN value. CONCLUSIONS Regarding DC, the tested bulk-fill resin composites can be safely used up to at least 4-mm incremental thickness. However, with respect to hardness, only XF and QF achieved acceptable results at 4-mm depth with 30 s of irradiation. CLINICAL RELEVANCE Minimum irradiation times stated by the manufacturers cannot be recommended for placement of high-viscosity bulk-fill materials in 4-mm increments.

Abstract

OBJECTIVES To evaluate the influence of irradiation time on degree of conversion (DC) and microhardness of high-viscosity bulk-fill resin composites in depths up to 6 mm. MATERIALS AND METHODS Four bulk-fill materials (Tetric EvoCeram Bulk Fill-TECBF; x-tra fil-XF; QuixFil-QF; SonicFill-SF) and one conventional nano-hybrid resin composite (Tetric EvoCeram-TEC) were irradiated for 10, 20, or 30 s at 1,170 mW/cm(2). DC and Knoop microhardness (KHN) were recorded after 24-h dark storage at five depths: 0.1, 2, 4, 5, and 6 mm. Data were statistically analyzed using ANOVA and Bonferroni's post-hoc test (α = 0.05). RESULTS With increasing bulk thickness, DC and KHN significantly decreased for TEC. TECBF and SF showed a significant decrease in DC and KHN at 4-mm depth after 10-s irradiation, but no decrease in DC after 30-s irradiation (p > 0.05). XF and QF demonstrated no significant DC decrease at depths up to 6 mm after irradiation of at least 20 s. At 4-mm depth, all materials tested achieved at least 80 % of their maximum DC value, irrespective of irradiation time. However, at the same depth (4 mm), only XF and QF irradiated for 30 s achieved at least 80 % of their maximum KHN value. CONCLUSIONS Regarding DC, the tested bulk-fill resin composites can be safely used up to at least 4-mm incremental thickness. However, with respect to hardness, only XF and QF achieved acceptable results at 4-mm depth with 30 s of irradiation. CLINICAL RELEVANCE Minimum irradiation times stated by the manufacturers cannot be recommended for placement of high-viscosity bulk-fill materials in 4-mm increments.

Statistics

Citations

24 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

51 downloads since deposited on 29 Oct 2014
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Preventive Dentistry, Periodontology and Cariology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2015
Deposited On:29 Oct 2014 14:10
Last Modified:05 Apr 2016 18:26
Publisher:Springer
ISSN:1432-6981
Publisher DOI:https://doi.org/10.1007/s00784-014-1302-6
PubMed ID:25138041

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 423kB
View at publisher