Header

UZH-Logo

Maintenance Infos

Early adolescent cognitive gains are marked by increased sleep EEG coherence


Tarokh, Leila; Carskadon, Mary A; Achermann, Peter (2014). Early adolescent cognitive gains are marked by increased sleep EEG coherence. PLoS ONE, 9(9):e106847.

Abstract

Although the increases in cognitive capacities of adolescent humans are concurrent with significant cortical restructuring, functional associations between these phenomena are unclear. We examined the association between cortical development, as measured by the sleep EEG, and cognitive performance in a sample of 9/10 year olds followed up 1 to 3 years later. Our cognitive measures included a response inhibition task (Stroop), an executive control task (Trail Making), and a verbal fluency task (FAS). We correlated sleep EEG measures of power and intra-hemispheric coherence at the initial assessment with performance at that assessment. In addition we correlated the rate of change across assessments in sleep EEG measures with the rate of change in performance. We found no correlation between sleep EEG power and performance on cognitive tasks for the initial assessment. In contrast, we found a significant correlation of the rate of change in intra-hemispheric coherence for the sigma band (11 to 16 Hz) with rate of change in performance on the Stroop (r = 0.61; p<0.02) and Trail Making (r = -0.51; p<0.02) but no association for the FAS. Thus, plastic changes in connectivity (i.e., sleep EEG coherence) were associated with improvement in complex cognitive function.

Abstract

Although the increases in cognitive capacities of adolescent humans are concurrent with significant cortical restructuring, functional associations between these phenomena are unclear. We examined the association between cortical development, as measured by the sleep EEG, and cognitive performance in a sample of 9/10 year olds followed up 1 to 3 years later. Our cognitive measures included a response inhibition task (Stroop), an executive control task (Trail Making), and a verbal fluency task (FAS). We correlated sleep EEG measures of power and intra-hemispheric coherence at the initial assessment with performance at that assessment. In addition we correlated the rate of change across assessments in sleep EEG measures with the rate of change in performance. We found no correlation between sleep EEG power and performance on cognitive tasks for the initial assessment. In contrast, we found a significant correlation of the rate of change in intra-hemispheric coherence for the sigma band (11 to 16 Hz) with rate of change in performance on the Stroop (r = 0.61; p<0.02) and Trail Making (r = -0.51; p<0.02) but no association for the FAS. Thus, plastic changes in connectivity (i.e., sleep EEG coherence) were associated with improvement in complex cognitive function.

Statistics

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

60 downloads since deposited on 24 Oct 2014
30 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:24 Oct 2014 13:31
Last Modified:08 Dec 2017 07:41
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0106847
PubMed ID:25208326

Download

Download PDF  'Early adolescent cognitive gains are marked by increased sleep EEG coherence'.
Preview
Content: Published Version
Filetype: PDF
Size: 463kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)