Header

UZH-Logo

Maintenance Infos

Differential expression of granulocyte, macrophage, and hypoxia markers during early and late wound healing stages following transplantation of tissue-engineered skin substitutes of human origin


Klar, Agnieszka S; Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Michalak, Katarzyna; Kisiel, Marta; Reichmann, Ernst; Meuli, Martin (2014). Differential expression of granulocyte, macrophage, and hypoxia markers during early and late wound healing stages following transplantation of tissue-engineered skin substitutes of human origin. Pediatric Surgery International, 30(12):1257-1264.

Abstract

PURPOSE
Human pigmented tissue-engineered skin substitutes represent an advanced therapeutic option to treat skin defects. The inflammatory response is one of the major factors determining integration and long-term survival of such a graft in vivo. The aim of the present study was to investigate the spatiotemporal distribution of host-derived macrophage and granulocyte graft infiltration as well as hypoxia-inducible factor 1 alpha (HIF-1-alpha) expression in a (nu/nu) rat model.

METHODS
Keratinocytes, melanocytes, and fibroblasts derived from human skin biopsies were isolated, cultured, and expanded in vitro. Dermal fibroblasts were seeded into collagen type I hydrogels that were subsequently covered by keratinocytes and melanocytes in 5:1 ratio. These pigmented dermo-epidermal skin substitutes were transplanted onto full-thickness skin wounds on the back of immuno-incompetent rats and analyzed at early (1 and 3 weeks) and late (6 and 12 weeks) stages of wound healing. The expression of distinct inflammatory cell markers specific for granulocytes (HIS48) or macrophages (CD11b, CD68), as well as HIF-1-alpha were analyzed and quantified by immunofluorescence microscopy.

RESULTS
Our data demonstrate that granulocytes infiltrate the entire graft at 1 week post-transplantation. This was followed by monocyte/macrophage recruitment to the graft at 3-12 weeks. The macrophages were initially restricted to the borders of the graft (early stages), and were then found throughout the entire graft (late stages). We observed a time-dependent decrease of macrophages. Only a few graft-infiltrating granulocytes were found between 6-12 weeks, mostly at the graft borders. A heterogeneous expression of HIF-1-alpha was observed at both early and late wound healing stages.

CONCLUSIONS
Our findings demonstrate the spatiotemporal distribution of inflammatory cells in our transplants closely resembles the one documented for physiological wound healing.

Abstract

PURPOSE
Human pigmented tissue-engineered skin substitutes represent an advanced therapeutic option to treat skin defects. The inflammatory response is one of the major factors determining integration and long-term survival of such a graft in vivo. The aim of the present study was to investigate the spatiotemporal distribution of host-derived macrophage and granulocyte graft infiltration as well as hypoxia-inducible factor 1 alpha (HIF-1-alpha) expression in a (nu/nu) rat model.

METHODS
Keratinocytes, melanocytes, and fibroblasts derived from human skin biopsies were isolated, cultured, and expanded in vitro. Dermal fibroblasts were seeded into collagen type I hydrogels that were subsequently covered by keratinocytes and melanocytes in 5:1 ratio. These pigmented dermo-epidermal skin substitutes were transplanted onto full-thickness skin wounds on the back of immuno-incompetent rats and analyzed at early (1 and 3 weeks) and late (6 and 12 weeks) stages of wound healing. The expression of distinct inflammatory cell markers specific for granulocytes (HIS48) or macrophages (CD11b, CD68), as well as HIF-1-alpha were analyzed and quantified by immunofluorescence microscopy.

RESULTS
Our data demonstrate that granulocytes infiltrate the entire graft at 1 week post-transplantation. This was followed by monocyte/macrophage recruitment to the graft at 3-12 weeks. The macrophages were initially restricted to the borders of the graft (early stages), and were then found throughout the entire graft (late stages). We observed a time-dependent decrease of macrophages. Only a few graft-infiltrating granulocytes were found between 6-12 weeks, mostly at the graft borders. A heterogeneous expression of HIF-1-alpha was observed at both early and late wound healing stages.

CONCLUSIONS
Our findings demonstrate the spatiotemporal distribution of inflammatory cells in our transplants closely resembles the one documented for physiological wound healing.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 29 Oct 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Clinic for Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:18 October 2014
Deposited On:29 Oct 2014 18:15
Last Modified:24 Jan 2017 08:03
Publisher:Springer
ISSN:0179-0358
Publisher DOI:https://doi.org/10.1007/s00383-014-3616-5
PubMed ID:25326120

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations