Header

UZH-Logo

Maintenance Infos

Detection of antibodies to the feline leukemia Virus (FeLV) transmembrane protein p15E: an alternative approach for serological FeLV detection based on antibodies to p15E


Boenzli, Eva; Hadorn, Maik; Hartnack, Sonja; Huder, Jon; Hofmann-Lehmann, Regina; Lutz, Hans (2014). Detection of antibodies to the feline leukemia Virus (FeLV) transmembrane protein p15E: an alternative approach for serological FeLV detection based on antibodies to p15E. Journal of Clinical Microbiology, 52(6):2046-2052.

Abstract

The aim of this report was to investigate whether the diagnosis of feline leukemia virus (FeLV) infection by serology might be feasible and useful. Among the various viral proteins, the FeLV env-gene product (SU) and the envelope transmembrane protein p15E were considered promising candidates for the serological diagnosis of FeLV infection. Thus, we evaluated p15E and three other FeLV antigens, namely, a recombinant env-gene product, whole FeLV, and a short peptide from the FeLV transmembrane protein, for their potential to detect FeLV infection. To evaluate possible exposure of cats to FeLV, we tested serum and plasma samples from experimentally and naturally infected and vaccinated cats for the presence of antibodies to these antigens by enzyme-linked immunosorbent assays (ELISAs). The serological results were compared with the p27 and proviral real-time PCR results. We found that p15E displayed a diagnostic sensitivity of 95.7% and a specificity of 100% in experimentally infected cats. In naturally infected cats, p15E showed a diagnostic sensitivity of 77.1% and a specificity of 85.6%. Vaccinated cats displayed minimal antibody levels to p15E, suggesting that anti-p15E antibodies indicate infection rather than vaccination. The other antigens turned out to be too unspecific. The lower specificity in cats exposed to FeLV under field conditions may be explained by the fact that some cats become infected and seroconvert in the absence of detectable viral nucleic acids in plasma. We conclude that p15E serology may become a valuable tool for diagnosing FeLV infection; in some cases, it may replace PCR.

Abstract

The aim of this report was to investigate whether the diagnosis of feline leukemia virus (FeLV) infection by serology might be feasible and useful. Among the various viral proteins, the FeLV env-gene product (SU) and the envelope transmembrane protein p15E were considered promising candidates for the serological diagnosis of FeLV infection. Thus, we evaluated p15E and three other FeLV antigens, namely, a recombinant env-gene product, whole FeLV, and a short peptide from the FeLV transmembrane protein, for their potential to detect FeLV infection. To evaluate possible exposure of cats to FeLV, we tested serum and plasma samples from experimentally and naturally infected and vaccinated cats for the presence of antibodies to these antigens by enzyme-linked immunosorbent assays (ELISAs). The serological results were compared with the p27 and proviral real-time PCR results. We found that p15E displayed a diagnostic sensitivity of 95.7% and a specificity of 100% in experimentally infected cats. In naturally infected cats, p15E showed a diagnostic sensitivity of 77.1% and a specificity of 85.6%. Vaccinated cats displayed minimal antibody levels to p15E, suggesting that anti-p15E antibodies indicate infection rather than vaccination. The other antigens turned out to be too unspecific. The lower specificity in cats exposed to FeLV under field conditions may be explained by the fact that some cats become infected and seroconvert in the absence of detectable viral nucleic acids in plasma. We conclude that p15E serology may become a valuable tool for diagnosing FeLV infection; in some cases, it may replace PCR.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Virology
05 Vetsuisse Faculty > Chair in Veterinary Epidemiology
05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:30 Oct 2014 09:47
Last Modified:01 Jun 2017 00:14
Publisher:American Society for Microbiology
ISSN:0095-1137
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/JCM.02584-13
PubMed ID:24696026

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations