Header

UZH-Logo

Maintenance Infos

Role of PARP-1 and PARP-2 in the expression of apoptosis-regulating genes in HeLa cells


Cohausz, O; Althaus, F R (2009). Role of PARP-1 and PARP-2 in the expression of apoptosis-regulating genes in HeLa cells. Cell Biology and Toxicology, 25(4):379-391.

Abstract

Poly (ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme involved in DNA damage processing, apoptosis, and genetic stability. Many lines of evidence suggest that PARP-1 is implicated in transcriptional regulation of various genes through the modulation of chromatin structure or through direct interaction with transcription factors and/or transcription factor-binding sites. In the present study, we applied TaqMan Low-Density Array analyses to investigate the expression of genes involved in apoptotic cell death induced by an alkylating agent. Using RNA interference, we determined the roles of PARP-1 and PARP-2 in transcriptional regulation during apoptosis in HeLa cells. Of the 93 genes monitored, 33 differentially expressed genes were identified after induction of apoptosis. Whereas the down-regulation of PARP-1 and PARP-2 had no impact on gene expression per se, we observed that Bcl10, c-Rel, and tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 are differentially expressed after induction of apoptosis in a PARP-1-dependent manner. These findings suggest that PARP-1—but not PARP-2—is required for proper expression of major genes involved in regulation of apoptosis.

Abstract

Poly (ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme involved in DNA damage processing, apoptosis, and genetic stability. Many lines of evidence suggest that PARP-1 is implicated in transcriptional regulation of various genes through the modulation of chromatin structure or through direct interaction with transcription factors and/or transcription factor-binding sites. In the present study, we applied TaqMan Low-Density Array analyses to investigate the expression of genes involved in apoptotic cell death induced by an alkylating agent. Using RNA interference, we determined the roles of PARP-1 and PARP-2 in transcriptional regulation during apoptosis in HeLa cells. Of the 93 genes monitored, 33 differentially expressed genes were identified after induction of apoptosis. Whereas the down-regulation of PARP-1 and PARP-2 had no impact on gene expression per se, we observed that Bcl10, c-Rel, and tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 are differentially expressed after induction of apoptosis in a PARP-1-dependent manner. These findings suggest that PARP-1—but not PARP-2—is required for proper expression of major genes involved in regulation of apoptosis.

Statistics

Citations

7 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 19 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:August 2009
Deposited On:19 Jan 2009 15:39
Last Modified:05 Apr 2016 12:49
Publisher:Springer
ISSN:0742-2091
Funders:Swiss National Science Foundation
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s10565-008-9092-8
PubMed ID:18587655

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations