Header

UZH-Logo

Maintenance Infos

Publications for Abgrall, R

Navigate back| Up a level
Export as
Group by:
Number of items: 44.

2018

Abgrall, Rémi; Bacigaluppi, P; Tokareva, S (2018). A high-order nonconservative approach for hyperbolic equations in fluid dynamics. Computers & Fluids, 169:10-22.

2017

Abgrall, Rémi; Tokareva, Svetlana (2017). Staggered grid residual distribution scheme for Lagrangian hydrodynamics. SIAM Journal on Scientific Computing, 39(5):A2317-A2344.

Abgrall, Rémi (2017). About non linear stabilization for scalar hyperbolic problems. In: Melnik, Roderick; Makarov, Roman; Belair, Jacques. Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science. New York: Springer, 89-116.

Abgrall, Rémi; Mishra, S (2017). Uncertainty quantification for hyperbolic systems of conservation laws. Handbook of Numerical Analysis, 18:507-544.

Abgrall, Rémi; Congedo, P. M; Geraci, G (2017). Towards a unified multiresolution scheme for treating discontinuities in differential equations with uncertainties. Mathematics and Computers in Simulation, 139:1-22.

Abgrall, Rémi; Koren, Barry (2017). Computational science for energy research. Journal of Computational Physics, 345:A1.

Abgrall, Rémi; Viville, Q; Beaugendre, H; Dobrzynski, C (2017). Construction of a p-adaptive continuous residual distribution scheme. Journal of Scientific Computing, 72(3):1232-1268.

Abgrall, Rémi (2017). High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. Journal of Scientific Computing, 73(2-3):461-494.

Abgrall, Rémi; Bacigaluppi, Paola (2017). Design of a second-order fully explicit residual distribution scheme for compressible multiphase flows. In: 8th International Symposium on Finite Volumes for Complex Applications - Hyperbolic, Elliptic and Parabolic Problems, FVCA 8 2017, Lille, France, 12 June 2017 - 16 June 2017, 257-264.

Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin (2017). Hybrid explicit residual distribution scheme for compressible multiphase flows. Journal of Physics : Conference Series, 821(1):012007.

Rodio, M G; Abgrall, Rémi; Congedo, P M (2017). Numerical simulation of cavitating flows under uncertainty. Journal of Physics : Conference Series, 821:012009.

Abgrall, Rémi (2017). Some Failures of Riemann Solvers. In: Abgrall, Rémi; Shu, Chi-Wang. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues. North Holland: Elsevier, 351-360.

Abgrall, Rémi; Shu, Chi-Wang (2017). Handbook of numerical methods for hyperbolic problems: applied and modern issues. Amsterdam: Elsevier.

Abgrall, Rémi (2017). Some remarks about conservation for residual distribution schemes. Computational Methods in Applied Mathematics, 0(0):Epub ahead of print.

2016

Tang, Kunkun; Congedo, Pietro M; Abgrall, Rémi (2016). Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation. Journal of Computational Physics, 314:557-589.

Schmidtmann, Birte; Abgrall, Rémi; Torrilhon, Manuel (2016). On third-order limiter functions for finite volume methods. Bulletin of the Brazilian Mathematical Society, N.S., 47(2):753-764.

Geraci, Gianluca; Congedo, Pietro Marco; Abgrall, Rémi; Iaccarino, Gianluca (2016). A novel weakly-intrusive non-linear multiresolution framework for uncertainty quantification in hyperbolic partial differential equations. Journal of Scientific Computing, 66(1):358-405.

Abgrall, Rémi; Shu, Chi-Wang (2016). Handbook of numerical methods for hyperbolic problems: basic and fundamental issues. Amsterdam: Elsevier.

Geraci, Gianluca; Congedo, Pietro Marco; Abgrall, Rémi; Iaccarino, Gianluca (2016). High-order statistics in global sensitivity analysis: Decomposition and model reduction. Computer Methods in Applied Mechanics and Engineering, 301:80-115.

Abgrall, Rémi; Bacigaluppi, Paola; Tokareva, Svetlana (2016). How to avoid mass matrix for linear hyperbolic problems. In: Karasözen, B; Manguoglu, M; Tezer-Sezgin, M; Göktepe, S; Ugur, Ö. Numerical Mathematics and Advanced Applications ENUMATH 2015. Cham: Springer, 75-86.

Abgrall, Rémi; Amsallem, David; Crisovan, Roxana (2016). Robust model reduction by $\mathit{L^{1}}$-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems. Advanced Modeling and Simulation in Engineering Sciences, 3(1):online.

2015

Abgrall, Rémi; Congedo, Pietro Marco; Geraci, Gianluca; Rodio, Maria Giovanna (2015). Stochastic discrete equation method (sDEM) for two-phase flows. Journal of Computational Physics, 299:281-306.

Rodio, M G; Abgrall, Rémi (2015). An innovative phase transition modeling for reproducing cavitation through a five-equation model and theoretical generalization to six and seven-equation models. International Journal of Heat and Mass Transfer, 89:1386-1401.

Abgrall, Rémi; Congedo, Pietro Marco; Geraci, Gianluca; Iaccarino, Gianluca (2015). An adaptive multiresolution semi-intrusive scheme for UQ in compressible fluid problems. International Journal for Numerical Methods in Fluids, 78(10):595-637.

Tang, Kunkun; Congedo, Pietro Marco; Abgrall, Rémi (2015). Sensitivity analysis using anchored ANOVA expansion and high-order moments computation. International Journal for Numerical Methods in Engineering, 102(9):1554-1584.

Arpaia, Luca; Ricchiuto, Mario; Abgrall, Rémi (2015). An ALE formulation for explicit Runge–Kutta residual distribution. Journal of Scientific Computing, 63(2):502-547.

Abgrall, Rémi; de Santis, Dante (2015). Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier–Stokes equations. Journal of Computational Physics, 283:329-359.

Dobeš, Jiři; Ricchiuto, Mario; Abgrall, Rémi; Deconinck, Herman (2015). On hybrid residual distribution–Galerkin discretizations for steady and time dependent viscous laminar flows. Computer Methods in Applied Mechanics and Engineering, 283:1336-1356.

2014

Vilar, François; Maire, Pierre-Henri; Abgrall, Rémi (2014). A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. Journal of Computational Physics, 276:188-234.

Jennings, G I; Prigge, D; Carney, S; Karni, S; Rauch, J B; Abgrall, Rémi (2014). Water wave propagation in unbounded domains. Part II: Numerical methods for fractional PDEs. Journal of Computational Physics, 275:443-458.

Abgrall, Rémi; Dobrzynski, Cécile; Froehly, A (2014). A method for computing curved meshes via the linear elasticity analogy. International Journal for Numerical Methods in Fluids, 76(4):246-266.

Abgrall, Rémi; Kumar, Harish (2014). Robust finite volume schemes for two-fluid plasma equations. Journal of Scientific Computing, 60(3):584-611.

Abgrall, Rémi; Smolarkiewicz, Piotr; Xiao, Feng; Zaleski, Stéphane (2014). Frontiers in computational physics: modeling the earth system. Journal of Computational Physics, 271:1.

Balsara, Dinshaw S; Dumbser, Michael; Abgrall, Rémi (2014). Multidimensional HLLC Riemann solver for unstructured meshes – with application to Euler and MHD flows. Journal of Computational Physics, 261:172-208.

Abgrall, Rémi; Congedo, P M; Geraci, G (2014). A one-time truncate and encode multiresolution stochastic framework. Journal of Computational Physics, 257(Part A):19-56.

Abgrall, Rémi; Beaugendre, H; Dobrzynski, C (2014). An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. Journal of Computational Physics, 257(Part A):83-101.

Abgrall, Rémi; Dallet, Sophie (2014). An asymptotic preserving scheme for the barotropic baer-nunziato model. In: Fuhrmann, Jürgen; Ohlberger, Mario; Rohde, Christian. Finite volumes for complex applications vii-elliptic, parabolic and hyperbolic problems. Cham: Springer (Bücher), 749-757.

Abgrall, Rémi; de Santis, Dante; Ricchiuto, M (2014). High-order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids. SIAM Journal on Scientific Computing, 36(3):A955-A983.

Abgrall, Rémi; Kumar, Harish Prasanna Mohan (2014). Numerical approximation of a compressible multiphase system. Communications in Computational Physics, 15(5):1237-1265.

Abgrall, Rémi (2014). On a class of high order schemes for hyperbolic problems. In: Jang, Sun Young; Kim, Young Rock; Lee, Dae-Woong; Yie, Ikkwon. Proceedings of the International Congress of Mathematicians, Seoul 2014. Seoul, 699-725.

2013

Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubière, Raphaël; Rebourset, Bernard (2013). A nominally second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows on two-dimensional unstructured grids. Journal of Computational Physics, 235(15):626-665.

Wang, Zhijian J; Fidkowski, Krzysztof; Abgrall, Rémi; Bassi, Francesco; Caraeni, Doru; Cary, Andrew; Deconinck, Herman; Hartmann, Ralf; Hillewaert, Koen; Huynh, Hung T; Kroll, Norbert; May, Georg; Persson, Per-Olof; van Leer, Bram; Visbal, Miguel R (2013). High-order CFD methods: Current status and perspective. International Journal for Numerical Methods in Fluids, 72(8):811-845.

Abgrall, Rémi; Krust, Arnaud (2013). An adaptive enrichment algorithm for advection-dominated problems. International Journal for Numerical Methods in Fluids, 72(3):359-374.

Abgrall, Rémi; Baurin, G; Krust, Arnaud; de Santis, Dante; Ricchiuto, Mario (2013). Numerical approximation of parabolic problems by residual distribution schemes. International Journal for Numerical Methods in Fluids, 71(9):1191-1206.

This list was generated on Sun Jun 24 16:54:18 2018 CEST.