Publication:

Clinical potential of automated convolutional neural network-based hematoma volumetry after aneurysmal subarachnoid hemorrhage

Date

Date

Date
2023
Journal Article
Published version

Citations

Citation copied

Thomson, B. R., Gürlek, F., Buzzi, R. M., Schwendinger, N., Keller, E., Regli, L., van Doormaal, T. P., Schaer, D. J., Hugelshofer, M., & Akeret, K. (2023). Clinical potential of automated convolutional neural network-based hematoma volumetry after aneurysmal subarachnoid hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 32(11), 107357. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107357

Abstract

Abstract

Abstract

Objectives Cerebrospinal fluid hemoglobin has been positioned as a potential biomarker and drug target for aneurysmal subarachnoid hemorrhage-related secondary brain injury (SAH-SBI). The maximum amount of hemoglobin, which may be released into the cerebrospinal fluid, is defined by the initial subarachnoid hematoma volume (ISHV). In patients without external ventricular or lumbar drain, there remains an unmet clinical need to predict the risk for SAH-SBI. The aim of this study was to explore automated segmentation of ISHV as a potent

Additional indexing

Creators (Authors)

  • Thomson, Bart R
  • Gürlek, Firat
  • Buzzi, Raphael M
  • Schwendinger, Nina
  • Keller, Emanuela
  • Regli, Luca
  • van Doormaal, Tristan PC
  • Schaer, Dominik J
  • Hugelshofer, Michael
  • Akeret, Kevin

Journal/Series Title

Journal/Series Title

Journal/Series Title

Volume

Volume

Volume
32

Number

Number

Number
11

Page Range

Page Range

Page Range
107357

Item Type

Item Type

Item Type
Journal Article

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Keywords

Cardiology and Cardiovascular Medicine, Neurology (clinical), Rehabilitation, Surgery

Language

Language

Language
English

Publication date

Publication date

Publication date
2023-09-11

Date available

Date available

Date available
2023-09-21

Publisher

Publisher

Publisher

ISSN or e-ISSN

ISSN or e-ISSN

ISSN or e-ISSN
1052-3057

OA Status

OA Status

OA Status
Hybrid

PubMed ID

PubMed ID

PubMed ID

Citations

Citation copied

Thomson, B. R., Gürlek, F., Buzzi, R. M., Schwendinger, N., Keller, E., Regli, L., van Doormaal, T. P., Schaer, D. J., Hugelshofer, M., & Akeret, K. (2023). Clinical potential of automated convolutional neural network-based hematoma volumetry after aneurysmal subarachnoid hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 32(11), 107357. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107357

Hybrid Open Access
Loading...
Thumbnail Image

Files

Files

Files
Files available to download:1

Files

Files

Files
Files available to download:1
Loading...
Thumbnail Image