Publication:

Prediction of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using data from a cross-sectional cohort

Date

Date

Date
2023
Journal Article
Published version

Citations

Citation copied

Pamporaki, C., Berends, A. M. A., Filippatos, A., Prodanov, T., Meuter, L., Prejbisz, A., Beuschlein, F., Fassnacht, M., Timmers, H. J. L. M., Nölting, S., Abhyankar, K., Constantinescu, G., Kunath, C., de Haas, R. J., Wang, K., Remde, H., Bornstein, S. R., Januszewicz, A., Robledo, M., … Eisenhofer, G. (2023). Prediction of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using data from a cross-sectional cohort. The Lancet Digital Health, 5(9), e551–e559. https://doi.org/10.1016/S2589-7500(23)00094-8

Abstract

Abstract

Abstract

BACKGROUND Pheochromocytomas and paragangliomas have up to a 20% rate of metastatic disease that cannot be reliably predicted. This study prospectively assessed whether the dopamine metabolite, methoxytyramine, might predict metastatic disease, whether predictions might be improved using machine learning models that incorporate other features, and how machine learning-based predictions compare with predictions made by specialists in the field.

METHODS In this machine learning modelling study, we used cross-sectional cohort data from

Additional indexing

Creators (Authors)

  • Pamporaki, Christina
    affiliation.icon.alt
  • Berends, Annika M A
    affiliation.icon.alt
  • Filippatos, Angelos
    affiliation.icon.alt
  • Prodanov, Tamara
    affiliation.icon.alt
  • Meuter, Leah
    affiliation.icon.alt
  • Prejbisz, Alexander
    affiliation.icon.alt
  • Fassnacht, Martin
    affiliation.icon.alt
  • Timmers, Henri J L M
    affiliation.icon.alt
  • Nölting, Svenja
    affiliation.icon.alt
  • Abhyankar, Kaushik
    affiliation.icon.alt
  • Constantinescu, Georgiana
    affiliation.icon.alt
  • Kunath, Carola
    affiliation.icon.alt
  • de Haas, Robbert J
    affiliation.icon.alt
  • Wang, Katharina
    affiliation.icon.alt
  • Remde, Hanna
    affiliation.icon.alt
  • Bornstein, Stefan R
    affiliation.icon.alt
  • Januszewicz, Andrzeij
    affiliation.icon.alt
  • Robledo, Mercedes
    affiliation.icon.alt
  • Lenders, Jacques W M
    affiliation.icon.alt
  • Kerstens, Michiel N
    affiliation.icon.alt
  • Pacak, Karel
    affiliation.icon.alt
  • Eisenhofer, Graeme
    affiliation.icon.alt

Journal/Series Title

Journal/Series Title

Journal/Series Title

Volume

Volume

Volume
5

Number

Number

Number
9

Page Range

Page Range

Page Range
e551

Page end

Page end

Page end
e559

Item Type

Item Type

Item Type
Journal Article

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Language

Language

Language
English

Publication date

Publication date

Publication date
2023-09-01

Date available

Date available

Date available
2024-02-07

Publisher

Publisher

Publisher

ISSN or e-ISSN

ISSN or e-ISSN

ISSN or e-ISSN
2589-7500

OA Status

OA Status

OA Status
Gold

Free Access at

Free Access at

Free Access at
DOI

PubMed ID

PubMed ID

PubMed ID

Citations

Citation copied

Pamporaki, C., Berends, A. M. A., Filippatos, A., Prodanov, T., Meuter, L., Prejbisz, A., Beuschlein, F., Fassnacht, M., Timmers, H. J. L. M., Nölting, S., Abhyankar, K., Constantinescu, G., Kunath, C., de Haas, R. J., Wang, K., Remde, H., Bornstein, S. R., Januszewicz, A., Robledo, M., … Eisenhofer, G. (2023). Prediction of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using data from a cross-sectional cohort. The Lancet Digital Health, 5(9), e551–e559. https://doi.org/10.1016/S2589-7500(23)00094-8

Gold Open Access
Loading...
Thumbnail Image

Files

Files

Files
Files available to download:1

Files

Files

Files
Files available to download:1
Loading...
Thumbnail Image