Publication: Imputing missing data in plant traits: A guide to improve gap‐filling
Imputing missing data in plant traits: A guide to improve gap‐filling
Date
Date
Date
Citations
Joswig, J. S., Kattge, J., Kraemer, G., Mahecha, M. D., Rüger, N., Schaepman, M. E., Schrodt, F., & Schuman, M. C. (2023). Imputing missing data in plant traits: A guide to improve gap‐filling. Global Ecology and Biogeography, 32(8), 1395–1408. https://doi.org/10.1111/geb.13695
Abstract
Abstract
Abstract
Aim: Globally distributed plant trait data are increasingly used to understand relationships between biodiversity and ecosystem processes. However, global trait databases are sparse because they are compiled from many, mostly small databases. This sparsity in both trait space completeness and geographical distribution limits the potential for both multivariate and global analyses. Thus, ‘gap-filling’ approaches are often used to impute missing trait data. Recent methods, like Bayesian hierarchical probabilistic matrix factorization (B
Metrics
Downloads
Views
Additional indexing
Creators (Authors)
Volume
Volume
Volume
Number
Number
Number
Page Range
Page Range
Page Range
Page end
Page end
Page end
Item Type
Item Type
Item Type
Dewey Decimal Classifikation
Dewey Decimal Classifikation
Dewey Decimal Classifikation
Keywords
Language
Language
Language
Publication date
Publication date
Publication date
Date available
Date available
Date available
ISSN or e-ISSN
ISSN or e-ISSN
ISSN or e-ISSN
OA Status
OA Status
OA Status
Publisher DOI
Metrics
Downloads
Views
Citations
Joswig, J. S., Kattge, J., Kraemer, G., Mahecha, M. D., Rüger, N., Schaepman, M. E., Schrodt, F., & Schuman, M. C. (2023). Imputing missing data in plant traits: A guide to improve gap‐filling. Global Ecology and Biogeography, 32(8), 1395–1408. https://doi.org/10.1111/geb.13695