Publication: Nonlinear Landau damping for the Vlasov-Poisson system in $R^{3}$: the Poisson equilibrium
Nonlinear Landau damping for the Vlasov-Poisson system in $R^{3}$: the Poisson equilibrium
Date
Date
Date
Citations
Ionescu, A. D., Pausader, B., Wang, X., & Widmayer, K. (2022). Nonlinear Landau damping for the Vlasov-Poisson system in $R^{3}$: the Poisson equilibrium (2205.04540; ArXiv.Org). https://doi.org/10.48550/arXiv.2205.04540
Abstract
Abstract
Abstract
We prove asymptotic stability of the Poisson homogeneous equilibrium among solutions of the Vlassov-Poisson system in the Euclidean space $R^3$. More precisely, we show that small, smooth, and localized perturbations of the Poisson equilibrium lead to global solutions of the Vlasov-Poisson system, which scatter to linear solutions at a polynomial rate as $t→∞$. The Euclidean problem we consider here differs significantly from the classical work on Landau damping in the periodic setting, in several ways. Most importantly, the linearize
Additional indexing
Other titles
Other titles
Other titles
Creators (Authors)
Series Name
Series Name
Series Name
Item Type
Item Type
Item Type
In collections
Language
Language
Language
Publication date
Publication date
Publication date
Date available
Date available
Date available
ISSN or e-ISSN
ISSN or e-ISSN
ISSN or e-ISSN
OA Status
OA Status
OA Status
Free Access at
Free Access at
Free Access at
Publisher DOI
Citations
Ionescu, A. D., Pausader, B., Wang, X., & Widmayer, K. (2022). Nonlinear Landau damping for the Vlasov-Poisson system in $R^{3}$: the Poisson equilibrium (2205.04540; ArXiv.Org). https://doi.org/10.48550/arXiv.2205.04540