Publication:

Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning

Date

Date

Date
2019
Journal Article
Published version
cris.lastimport.scopus2025-06-14T03:42:56Z
cris.lastimport.wos2025-07-26T01:47:01Z
cris.virtual.orcidhttps://orcid.org/0000-0002-9627-9565
cris.virtualsource.orcid374182c8-60fe-457e-b6c5-d0bcb1af277e
dc.contributor.institutionUniversity of Zurich
dc.date.accessioned2022-02-24T14:04:45Z
dc.date.available2022-02-24T14:04:45Z
dc.date.issued2019-12-01
dc.description.abstract

Knowledge of the spatial distribution of tree species is important for efficiently managing and monitoring forested ecosystems, especially in mixed forests of the temperate zone. In this study, we fused imaging spectroscopy (IS) data with leaf-on and off small-footprint airborne laser scanning (ALS) data, for tree species identification in a dense temperate forest in Switzerland. In addition to the spectral reflectance of the sunlit part of the tree crowns, structural features computed based on the height, intensity and point distribution of ALS data in both the vertical and horizontal dimensions are used as features. Features were extracted using a pixel-based (1 m × 1 m) and an individual tree crown approach. In addition, applying a floating forward feature selection approach revealed that the ALS-derived features provided relevant structural information for species identification, while IS-derived features added complementary biochemical information. Comparing the accuracies of three different combinations of ALS and IS data, shows the highest classification accuracy (kappa = 90.3%) was obtained by fusing a selected set of features at individual tree crowns (ITC), while the best kappa accuracies resulting from IS or ALS data alone were 74.7% and 75.1%, respectively. Inclusion of the ITC information improved the classification results for all datasets, however, this improvement is significantly higher for ALS derived datasets (+31%). Our results show that accurate ITC information drastically improves classification accuracy of tree species in dense forests and that multi-seasonal ALS structural attributes play a major part in species discrimination.

dc.identifier.doi10.1016/j.agrformet.2019.107744
dc.identifier.issn0168-1923
dc.identifier.scopus2-s2.0-85071717488
dc.identifier.urihttps://www.zora.uzh.ch/handle/20.500.14742/194524
dc.identifier.wos000500197400034
dc.language.isoeng
dc.subjectAtmospheric Science
dc.subjectAgronomy and Crop Science
dc.subjectGlobal and Planetary Change
dc.subjectForestry
dc.subject.ddc570 Life sciences; biology
dc.title

Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning

dc.typearticle
dcterms.accessRightsinfo:eu-repo/semantics/closedAccess
dcterms.bibliographicCitation.journaltitleAgricultural and Forest Meteorology
dcterms.bibliographicCitation.originalpublishernameElsevier
dcterms.bibliographicCitation.pagestart107744
dcterms.bibliographicCitation.volume279
dspace.entity.typePublicationen
uzh.contributor.affiliationBu Ali Sina University, University of Zurich
uzh.contributor.affiliationUniversity of Zurich
uzh.contributor.affiliationUniversity of Zurich
uzh.contributor.affiliationUniversity of Zurich
uzh.contributor.affiliationUniversity of Zurich
uzh.contributor.authorTorabzadeh, Hossein
uzh.contributor.authorLeiterer, Reik
uzh.contributor.authorHueni, Andreas
uzh.contributor.authorSchaepman, Michael E
uzh.contributor.authorMorsdorf, Felix
uzh.contributor.correspondenceYes
uzh.contributor.correspondenceNo
uzh.contributor.correspondenceNo
uzh.contributor.correspondenceNo
uzh.contributor.correspondenceNo
uzh.eprint.datestamp2022-02-24 14:04:45
uzh.eprint.lastmod2025-07-26 01:53:10
uzh.eprint.statusChange2022-02-24 14:04:45
uzh.funder.nameEuropean Space Agency
uzh.harvester.ethNo
uzh.harvester.nbNo
uzh.jdb.eprintsId33270
uzh.oastatus.unpaywallclosed
uzh.oastatus.zoraClosed
uzh.publication.citationTorabzadeh, Hossein; Leiterer, Reik; Hueni, Andreas; Schaepman, Michael E; Morsdorf, Felix (2019). Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning. Agricultural and Forest Meteorology, 279:107744.
uzh.publication.originalworkoriginal
uzh.publication.publishedStatusfinal
uzh.scopus.impact51
uzh.scopus.subjectsForestry
uzh.scopus.subjectsGlobal and Planetary Change
uzh.scopus.subjectsAgronomy and Crop Science
uzh.scopus.subjectsAtmospheric Science
uzh.workflow.doajuzh.workflow.doaj.false
uzh.workflow.eprintid217031
uzh.workflow.fulltextStatusnone
uzh.workflow.revisions39
uzh.workflow.rightsCheckkeininfo
uzh.workflow.sourceCrossref:10.1016/j.agrformet.2019.107744
uzh.workflow.statusarchive
uzh.wos.impact48
Publication available in collections: