Publication:

Recommending investors for new startups by integrating network diffusion and investors’ domain preference

Date

Date

Date
2020
Journal Article
Published version
cris.lastimport.scopus2025-05-31T03:37:26Z
cris.lastimport.wos2025-07-21T01:32:15Z
cris.virtual.orcidhttps://orcid.org/0000-0003-1032-5821
cris.virtualsource.orcid82316fd6-d371-4ddd-a4dc-b79fe57b38d6
dc.contributor.institutionUniversity of Zurich
dc.date.accessioned2020-01-09T16:47:27Z
dc.date.available2020-01-09T16:47:27Z
dc.date.issued2020-04-01
dc.description.abstract

Over the past decade, many startups have sprung up, which create a huge demand for financial support from venture investors. However, due to the information asymmetry between investors and companies, the financing process is usually challenging and time-consuming, especially for the startups that have not yet obtained any investment. Because of this, effective data-driven techniques to automatically match startups with potentially relevant investors would be highly desirable. Here, we analyze 34,469 valid investment events collected from www.itjuzi.com and consider the cold-start problem of recommending investors for new startups. We address this problem by constructing different tripartite network representations of the data where nodes represent investors, companies, and companies’ domains. First, we find that investors have strong domain preferences when investing, which motivates us to introduce virtual links between investors and investment domains in the tripartite network construction. Our analysis of the recommendation performance of diffusion-based algorithms applied to various network representations indicates that prospective investors for new startups are effectively revealed by integrating network diffusion processes with investors’ domain preference.

dc.identifier.doi10.1016/j.ins.2019.11.045
dc.identifier.issn0020-0255
dc.identifier.othermerlin-id:18862
dc.identifier.scopus2-s2.0-85076323139
dc.identifier.urihttps://www.zora.uzh.ch/handle/20.500.14742/163155
dc.identifier.wos000513293200007
dc.language.isoeng
dc.subject.ddc330 Economics
dc.title

Recommending investors for new startups by integrating network diffusion and investors’ domain preference

dc.typearticle
dcterms.accessRightsinfo:eu-repo/semantics/openAccess
dcterms.bibliographicCitation.journaltitleInformation Sciences
dcterms.bibliographicCitation.originalpublishernameElsevier
dcterms.bibliographicCitation.pageend115
dcterms.bibliographicCitation.pagestart103
dcterms.bibliographicCitation.volume515
dspace.entity.typePublicationen
uzh.contributor.affiliationUniversity of Electronic Science and Technology of China
uzh.contributor.affiliationUniversity of Electronic Science and Technology of China
uzh.contributor.affiliationUniversity of Electronic Science and Technology of China, Hangzhou Normal University
uzh.contributor.affiliationUniversity of Electronic Science and Technology of China, University of Zurich
uzh.contributor.authorXu, Shuqi
uzh.contributor.authorZhang, Qianming
uzh.contributor.authorLü, Linyuan
uzh.contributor.authorMariani, Manuel
uzh.contributor.correspondenceNo
uzh.contributor.correspondenceNo
uzh.contributor.correspondenceYes
uzh.contributor.correspondenceNo
uzh.document.availabilitypostprint
uzh.eprint.datestamp2020-01-09 16:47:27
uzh.eprint.lastmod2025-07-21 02:08:38
uzh.eprint.statusChange2020-01-09 16:47:27
uzh.harvester.ethYes
uzh.harvester.nbNo
uzh.identifier.doi10.5167/uzh-178484
uzh.jdb.eprintsId42140
uzh.oastatus.unpaywallbronze
uzh.oastatus.zoraHybrid
uzh.publication.citationXu, Shuqi; Zhang, Qianming; Lü, Linyuan; Mariani, Manuel (2020). Recommending investors for new startups by integrating network diffusion and investors’ domain preference. Information Sciences, 515:103-115.
uzh.publication.originalworkoriginal
uzh.publication.publishedStatusfinal
uzh.publication.scopedisciplinebased
uzh.scopus.impact18
uzh.scopus.subjectsSoftware
uzh.scopus.subjectsControl and Systems Engineering
uzh.scopus.subjectsTheoretical Computer Science
uzh.scopus.subjectsComputer Science Applications
uzh.scopus.subjectsInformation Systems and Management
uzh.scopus.subjectsArtificial Intelligence
uzh.workflow.chairSubjectMarketing and Market Research ProfReneAlgesheimer1
uzh.workflow.doajuzh.workflow.doaj.false
uzh.workflow.eprintid178484
uzh.workflow.fulltextStatuspublic
uzh.workflow.revisions48
uzh.workflow.rightsCheckoffen
uzh.workflow.statusarchive
uzh.wos.impact14
Files

Original bundle

Name:
shuqi-ins2019.pdf
Size:
864.95 KB
Format:
Adobe Portable Document Format
Publication available in collections: