Publication: Simulating hyperbolic space on a circuit board
Simulating hyperbolic space on a circuit board
Date
Date
Date
Citations
Lenggenhager, P. M., Stegmaier, A., Upreti, L. K., Hofmann, T., Helbig, T., Vollhardt, A., Greiter, M., Lee, C. H., Imhof, S., Brand, H., Kießling, T., Boettcher, I., Neupert, T., Thomale, R., & Bzdušek, T. (2022). Simulating hyperbolic space on a circuit board. Nature Communications, 13, 4373. https://doi.org/10.1038/s41467-022-32042-4
Abstract
Abstract
Abstract
The Laplace operator encodes the behavior of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we discuss and experimentally demonstrate that the spectral ordering of Laplacian eigenstates for hyperbolic (negatively curved) and flat two-dimensional spaces has a universally different structure. We use a lattice regularization of hyperbolic space in an electric-circuit network to measure t
Additional indexing
Creators (Authors)
Volume
Volume
Volume
Page Range
Page Range
Page Range
Item Type
Item Type
Item Type
In collections
Keywords
Language
Language
Language
Publication date
Publication date
Publication date
Date available
Date available
Date available
ISSN or e-ISSN
ISSN or e-ISSN
ISSN or e-ISSN
OA Status
OA Status
OA Status
Free Access at
Free Access at
Free Access at
Publisher DOI
Citations
Lenggenhager, P. M., Stegmaier, A., Upreti, L. K., Hofmann, T., Helbig, T., Vollhardt, A., Greiter, M., Lee, C. H., Imhof, S., Brand, H., Kießling, T., Boettcher, I., Neupert, T., Thomale, R., & Bzdušek, T. (2022). Simulating hyperbolic space on a circuit board. Nature Communications, 13, 4373. https://doi.org/10.1038/s41467-022-32042-4