Publication:

Universum autoencoder-based domain adaptation for speech emotion recognition

Date

Date

Date
2017
Journal Article
Published version

Citations

Citation copied

Deng, J., Xu, X., Zhang, Z., Frühholz, S., & Schuller, B. (2017). Universum autoencoder-based domain adaptation for speech emotion recognition. IEEE Signal Processing Letters, 24(4), 500–504. https://doi.org/10.1109/LSP.2017.2672753

Abstract

Abstract

Abstract

One of the serious obstacles to the applications of speech emotion recognition systems in real-life settings is the lack of generalization of the emotion classifiers. Many recognition systems often present a dramatic drop in performance when tested on speech data obtained from different speakers, acoustic environments, linguistic content, and domain conditions. In this letter, we propose a novel unsupervised domain adaptation model, called Universum autoencoders, to improve the performance of the systems evaluated in mismatched traini

Additional indexing

Creators (Authors)

  • Deng, Jun
    affiliation.icon.alt
  • Xu, Xinzhou
    affiliation.icon.alt
  • Zhang, Zixing
    affiliation.icon.alt
  • Frühholz, Sascha
    affiliation.icon.alt
  • Schuller, Bjorn
    affiliation.icon.alt

Journal/Series Title

Journal/Series Title

Journal/Series Title

Volume

Volume

Volume
24

Number

Number

Number
4

Page Range

Page Range

Page Range
500

Page end

Page end

Page end
504

Item Type

Item Type

Item Type
Journal Article

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Language

Language

Language
English

Publication date

Publication date

Publication date
2017-04-01

Date available

Date available

Date available
2017-11-27

ISSN or e-ISSN

ISSN or e-ISSN

ISSN or e-ISSN
1070-9908

OA Status

OA Status

OA Status
Closed

Citations

Citation copied

Deng, J., Xu, X., Zhang, Z., Frühholz, S., & Schuller, B. (2017). Universum autoencoder-based domain adaptation for speech emotion recognition. IEEE Signal Processing Letters, 24(4), 500–504. https://doi.org/10.1109/LSP.2017.2672753

Closed
Loading...
Thumbnail Image

Files

Files

Files
Files available to download:1

Files

Files

Files
Files available to download:1
Loading...
Thumbnail Image