Publication:

DeepCV: A Deep Learning Framework for Blind Search of Collective Variables in Expanded Configurational Space

Date

Date

Date
2022
Journal Article
Published version
cris.lastimport.scopus2025-06-18T03:32:35Z
cris.lastimport.wos2025-07-27T01:31:56Z
cris.virtual.orcidhttps://orcid.org/0000-0001-5116-5778
cris.virtualsource.orcid06f62020-bf52-440d-908e-7c077ed854f9
dc.contributor.institutionUniversity of Zurich
dc.date.accessioned2023-01-05T13:44:20Z
dc.date.available2023-01-05T13:44:20Z
dc.date.issued2022-12-26
dc.description.abstract

We present Deep learning for Collective Variables (DeepCV), a computer code that provides an efficient and customizable implementation of the deep autoencoder neural network (DAENN) algorithm that has been developed in our group for computing collective variables (CVs) and can be used with enhanced sampling methods to reconstruct free energy surfaces of chemical reactions. DeepCV can be used to conveniently calculate molecular features, train models, generate CVs, validate rare events from sampling, and analyze a trajectory for chemical reactions of interest. We use DeepCV in an example study of the conformational transition of cyclohexene, where metadynamics simulations are performed using DAENN-generated CVs. The results show that the adopted CVs give free energies in line with those obtained by previously developed CVs and experimental results. DeepCV is open-source software written in Python/C++ object-oriented languages, based on the TensorFlow framework and distributed free of charge for noncommercial purposes, which can be incorporated into general molecular dynamics software. DeepCV also comes with several additional tools, i.e., an application program interface (API), documentation, and tutorials.

dc.identifier.doi10.1021/acs.jcim.2c00883
dc.identifier.issn1549-9596
dc.identifier.scopus2-s2.0-85143391947
dc.identifier.urihttps://www.zora.uzh.ch/handle/20.500.14742/201552
dc.identifier.wos000891799800001
dc.language.isoeng
dc.subjectLibrary and Information Sciences
dc.subjectComputer Science Applications
dc.subjectGeneral Chemical Engineering
dc.subjectGeneral Chemistry
dc.subject.ddc540 Chemistry
dc.title

DeepCV: A Deep Learning Framework for Blind Search of Collective Variables in Expanded Configurational Space

dc.typearticle
dcterms.accessRightsinfo:eu-repo/semantics/openAccess
dcterms.bibliographicCitation.journaltitleJournal of Chemical Information and Modeling
dcterms.bibliographicCitation.number24
dcterms.bibliographicCitation.originalpublishernameAmerican Chemical Society (ACS)
dcterms.bibliographicCitation.pageend6364
dcterms.bibliographicCitation.pagestart6352
dcterms.bibliographicCitation.volume62
dspace.entity.typePublicationen
uzh.contributor.affiliationUniversity of Zurich
uzh.contributor.affiliationUniversity of Zurich
uzh.contributor.authorKetkaew, Rangsiman
uzh.contributor.authorLuber, Sandra
uzh.contributor.correspondenceNo
uzh.contributor.correspondenceYes
uzh.document.availabilitypostprint
uzh.eprint.datestamp2023-01-05 13:44:20
uzh.eprint.lastmod2025-07-27 02:08:35
uzh.eprint.statusChange2023-01-05 13:44:20
uzh.funder.nameSwiss National Science Foundation
uzh.funder.projectNumber1-006445-074
uzh.harvester.ethYes
uzh.harvester.nbNo
uzh.identifier.doi10.5167/uzh-225719
uzh.jdb.eprintsId12544
uzh.oastatus.unpaywallclosed
uzh.oastatus.zoraGreen
uzh.publication.citationKetkaew, Rangsiman; Luber, Sandra (2022). DeepCV: A Deep Learning Framework for Blind Search of Collective Variables in Expanded Configurational Space. Journal of Chemical Information and Modeling, 62(24):6352-6364.
uzh.publication.originalworkoriginal
uzh.publication.publishedStatusfinal
uzh.scopus.impact17
uzh.scopus.subjectsGeneral Chemistry
uzh.scopus.subjectsGeneral Chemical Engineering
uzh.scopus.subjectsComputer Science Applications
uzh.scopus.subjectsLibrary and Information Sciences
uzh.workflow.doajuzh.workflow.doaj.false
uzh.workflow.eprintid225719
uzh.workflow.fulltextStatuspublic
uzh.workflow.revisions45
uzh.workflow.rightsCheckkeininfo
uzh.workflow.sourceCrossref:10.1021/acs.jcim.2c00883
uzh.workflow.statusarchive
uzh.wos.impact18
Files

Original bundle

Name:
MS_revised_20221114.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Publication available in collections: