Publication:

Compactness properties for multiplication operators on von Neumann algebras and their preduals

Date

Date

Date
2006
Book Section
Published version

Citations

Citation copied

Goldstein, S., Jarchow, H., & Labuschagne, L. (2006). Compactness properties for multiplication operators on von Neumann algebras and their preduals. In M. Bożejko, W. MƗotkowski, & J. Wysoczański (Eds.), Quantum probability (No. 73; Vol. 73, Issue 73, pp. 177–185). Polish Academy of Sciences, Institute of Mathematics. https://doi.org/10.4064/bc73-0-12

Abstract

Abstract

Abstract

We consider compactness, weak compactness and complete continuity for multiplication operators on von Neumann algebras and their preduals.

Metrics

Views

90 since deposited on 2010-01-11
Acq. date: 2025-11-08

Citations

Additional indexing

Creators (Authors)

  • Goldstein, S
  • Jarchow, H
  • Labuschagne, L

Editors

  • Bożejko, M
  • MƗotkowski, W
  • Wysoczański, J

Title of Book

Title of Book

Title of Book
Quantum probability

Place of Publication

Place of Publication

Place of Publication
Warsaw

Publisher

Publisher

Publisher
Polish Academy of Sciences, Institute of Mathematics

Page Range

Page Range

Page Range
177

Page end

Page end

Page end
185

Item Type

Item Type

Item Type
Book Section

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Language

Language

Language
English

Publication date

Publication date

Publication date
2006

Date available

Date available

Date available
2010-01-11

Series Name

Series Name

Series Name
Banach Center Publications

OA Status

OA Status

OA Status
Closed

Metrics

Views

90 since deposited on 2010-01-11
Acq. date: 2025-11-08

Citations

Citations

Citation copied

Goldstein, S., Jarchow, H., & Labuschagne, L. (2006). Compactness properties for multiplication operators on von Neumann algebras and their preduals. In M. Bożejko, W. MƗotkowski, & J. Wysoczański (Eds.), Quantum probability (No. 73; Vol. 73, Issue 73, pp. 177–185). Polish Academy of Sciences, Institute of Mathematics. https://doi.org/10.4064/bc73-0-12

Closed
Loading...
Thumbnail Image

Permanent URL

Permanent URL

Permanent URL
No files available