Publication: Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps
Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps
Date
Date
Date
Citations
De Lellis, C., Marchese, A., Spadaro, E., & Valtorta, D. (2018). Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps. Commentarii Mathematici Helvetici (CMH), 93(4), 737–779. https://doi.org/10.4171/cmh/449
Abstract
Abstract
Abstract
In this article we prove that the singular set of Dirichlet-minimizing $Q$-valued functions is countably $(m−2)$-rectifiable and we give upper bounds for the $(m–2)$-dimensional Minkowski content of the set of singular points with multiplicity $Q$.
Additional indexing
Creators (Authors)
Journal/Series Title
Journal/Series Title
Journal/Series Title
Volume
Volume
Volume
Number
Number
Number
Page Range
Page Range
Page Range
Page end
Page end
Page end
Item Type
Item Type
Item Type
In collections
Keywords
Language
Language
Language
Publication date
Publication date
Publication date
Date available
Date available
Date available
ISSN or e-ISSN
ISSN or e-ISSN
ISSN or e-ISSN
OA Status
OA Status
OA Status
Free Access at
Free Access at
Free Access at
Publisher DOI
Citations
De Lellis, C., Marchese, A., Spadaro, E., & Valtorta, D. (2018). Rectifiability and upper Minkowski bounds for singularities of harmonic $Q$-valued maps. Commentarii Mathematici Helvetici (CMH), 93(4), 737–779. https://doi.org/10.4171/cmh/449