Publication:

Results on normal forms for FPU chains

Date

Date

Date
2008
Journal Article
Published version

Citations

Citation copied

Henrici, A., & Kappeler, T. (2008). Results on normal forms for FPU chains. Communications in Mathematical Physics, 278(1), 145–177. https://doi.org/10.1007/s00220-007-0387-z

Abstract

Abstract

Abstract

In this paper we prove, among other results, that near the equilibirum position, any periodic FPU chain with an odd number N of particles admits a Birkhoff normal form up to order 4, whereas any periodic FPU chain with N even admits a resonant normal form up to order 4. This resonant normal form of order 4 turns out to be completely integrable. Further, for N odd, we obtain an explicit formula of the Hessian of its Hamiltonian at the fixed point.

Additional indexing

Creators (Authors)

  • Henrici, A
    affiliation.icon.alt
  • Kappeler, T
    affiliation.icon.alt

Journal/Series Title

Journal/Series Title

Journal/Series Title

Volume

Volume

Volume
278

Number

Number

Number
1

Page Range

Page Range

Page Range
145

Page end

Page end

Page end
177

Item Type

Item Type

Item Type
Journal Article

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Language

Language

Language
English

Publication date

Publication date

Publication date
2008-02-01

Date available

Date available

Date available
2009-01-14

Publisher

Publisher

Publisher

ISSN or e-ISSN

ISSN or e-ISSN

ISSN or e-ISSN
0010-3616

Additional Information

Additional Information

Additional Information
The original publication is available at www.springerlink.com

OA Status

OA Status

OA Status
Green

Related URLs

Related URLs

Related URLs

Citations

Citation copied

Henrici, A., & Kappeler, T. (2008). Results on normal forms for FPU chains. Communications in Mathematical Physics, 278(1), 145–177. https://doi.org/10.1007/s00220-007-0387-z

Green Open Access
Loading...
Thumbnail Image

Files

Files

Files
Files available to download:2

Files

Files

Files
Files available to download:2
Loading...
Thumbnail Image