Publication:

CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing-learning-actuating system for high-speed visual object recognition and tracking

Date

Date

Date
2009
Journal Article
Published version

Citations

Citation copied

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gomez-Rodriguez, F., Camuñas-Mesa, L., Berner, R., Rivas, M., Delbruck, T., Liu, S. C., Douglas, R. J., Hafliger, P., Moreno, G., Civit, A., Serrano-Gotarredona, T., Acosta-Jimenez, A., & Linares-Barranco, B. (2009). CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Transactions on Neural Networks, 20(9), 1417–1438. https://doi.org/10.1109/TNN.2009.2023653

Abstract

Abstract

Abstract

This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves mil

Metrics

Downloads

356 since deposited on 2010-03-06
Acq. date: 2025-11-09

Views

237 since deposited on 2010-03-06
Acq. date: 2025-11-09

Additional indexing

Creators (Authors)

  • Serrano-Gotarredona, R
    affiliation.icon.alt
  • Oster, M
    affiliation.icon.alt
  • Lichtsteiner, P
    affiliation.icon.alt
  • Linares-Barranco, A
    affiliation.icon.alt
  • Paz-Vicente, R
    affiliation.icon.alt
  • Gomez-Rodriguez, F
    affiliation.icon.alt
  • Camuñas-Mesa, L
    affiliation.icon.alt
  • Berner, R
    affiliation.icon.alt
  • Rivas, M
  • Delbruck, T
    affiliation.icon.alt
  • Liu, S C
    affiliation.icon.alt
  • Douglas, R J
  • Hafliger, P
    affiliation.icon.alt
  • Moreno, G
  • Civit, A
  • Serrano-Gotarredona, T
    affiliation.icon.alt
  • Acosta-Jimenez, A
  • Linares-Barranco, B
    affiliation.icon.alt

Journal/Series Title

Journal/Series Title

Journal/Series Title

Volume

Volume

Volume
20

Number

Number

Number
9

Page Range

Page Range

Page Range
1417

Page end

Page end

Page end
1438

Item Type

Item Type

Item Type
Journal Article

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Keywords

neuromorphic AER system

Language

Language

Language
English

Publication date

Publication date

Publication date
2009

Date available

Date available

Date available
2010-03-06

Publisher

Publisher

Publisher
IEEE

ISSN or e-ISSN

ISSN or e-ISSN

ISSN or e-ISSN
1045-9227

Additional Information

Additional Information

Additional Information
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

OA Status

OA Status

OA Status
Green

PubMed ID

PubMed ID

PubMed ID

Related URLs

Related URLs

Related URLs

Metrics

Downloads

356 since deposited on 2010-03-06
Acq. date: 2025-11-09

Views

237 since deposited on 2010-03-06
Acq. date: 2025-11-09

Citations

Citation copied

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gomez-Rodriguez, F., Camuñas-Mesa, L., Berner, R., Rivas, M., Delbruck, T., Liu, S. C., Douglas, R. J., Hafliger, P., Moreno, G., Civit, A., Serrano-Gotarredona, T., Acosta-Jimenez, A., & Linares-Barranco, B. (2009). CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Transactions on Neural Networks, 20(9), 1417–1438. https://doi.org/10.1109/TNN.2009.2023653

Green Open Access
Loading...
Thumbnail Image

Files

Files

Files
Files available to download:1

Files

Files

Files
Files available to download:1
Loading...
Thumbnail Image