Publication: A Nash–Kuiper theorem for $C^{1,\frac{1}{5}-\delta}$ immersions of surfaces in 3 dimensions
A Nash–Kuiper theorem for $C^{1,\frac{1}{5}-\delta}$ immersions of surfaces in 3 dimensions
Date
Date
Date
Citations
De Lellis, C., Inauen, D., & Székelyhidi, Jr., László. (2018). A Nash–Kuiper theorem for $C^{1,\frac{1}{5}-\delta}$ immersions of surfaces in 3 dimensions. Revista Matemática Iberoamericana, 34(3), 1119–1152. https://doi.org/10.4171/rmi/1019
Abstract
Abstract
Abstract
We prove that, given a $C^2$ Riemannian metric $g$ on the 2-dimensional disk $D_2$, any short $C^1$ immersion of $(D_2,g)$ into $\mathbb{R}^3$ can be uniformly approximated with $C^{1,α}$ isometric immersions for any $α<\frac{1}{5}$. This statement improves previous results by Yu. F. Borisov and of a joint paper of the first and third author with S. Conti.
Metrics
Downloads
Views
Additional indexing
Creators (Authors)
Volume
Volume
Volume
Number
Number
Number
Page Range
Page Range
Page Range
Page end
Page end
Page end
Item Type
Item Type
Item Type
In collections
Keywords
Language
Language
Language
Publication date
Publication date
Publication date
Date available
Date available
Date available
ISSN or e-ISSN
ISSN or e-ISSN
ISSN or e-ISSN
OA Status
OA Status
OA Status
Free Access at
Free Access at
Free Access at
Publisher DOI
Metrics
Downloads
Views
Citations
De Lellis, C., Inauen, D., & Székelyhidi, Jr., László. (2018). A Nash–Kuiper theorem for $C^{1,\frac{1}{5}-\delta}$ immersions of surfaces in 3 dimensions. Revista Matemática Iberoamericana, 34(3), 1119–1152. https://doi.org/10.4171/rmi/1019