Publication:

Dimensional estimates for singular sets in geometric variational problems with free boundaries

Date

Date

Date
2017
Journal Article
Published version

Citations

Citation copied

De Philippis, G., & Maggi, F. (2017). Dimensional estimates for singular sets in geometric variational problems with free boundaries. Journal Für Die Reine Und Angewandte Mathematik, 2017(725), 217–234. https://doi.org/10.1515/crelle-2014-0100

Abstract

Abstract

Abstract

We show that singular sets of free boundaries arising in codimension one anisotropic geometric variational problems are $ℋ^{n−3}$-negligible, where n is the ambient space dimension. In particular our results apply to capillarity type problems, and establish everywhere regularity in the three-dimensional case.

Additional indexing

Creators (Authors)

  • De Philippis, Guido
    affiliation.icon.alt
  • Maggi, Francesco
    affiliation.icon.alt

Journal/Series Title

Journal/Series Title

Journal/Series Title

Volume

Volume

Volume
2017

Number

Number

Number
725

Page Range

Page Range

Page Range
217

Page end

Page end

Page end
234

Item Type

Item Type

Item Type
Journal Article

In collections

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Dewey Decimal Classifikation

Keywords

Applied Mathematics, General Mathematics

Language

Language

Language
English

Publication date

Publication date

Publication date
2017-01-01

Date available

Date available

Date available
2021-10-18

Publisher

Publisher

Publisher

ISSN or e-ISSN

ISSN or e-ISSN

ISSN or e-ISSN
0075-4102

OA Status

OA Status

OA Status
Green

Free Access at

Free Access at

Free Access at
DOI

Citations

Citation copied

De Philippis, G., & Maggi, F. (2017). Dimensional estimates for singular sets in geometric variational problems with free boundaries. Journal Für Die Reine Und Angewandte Mathematik, 2017(725), 217–234. https://doi.org/10.1515/crelle-2014-0100

Green Open Access
Loading...
Thumbnail Image

Files

Files

Files
Files available to download:1

Files

Files

Files
Files available to download:1
Loading...
Thumbnail Image