Publication:

The power of (non-)linear shrinking: a review and guide to covariance matrix estimation

Date

Date

Date
2020
Working Paper
cris.virtual.orcidhttps://orcid.org/0000-0003-0259-9945
cris.virtualsource.orcid43c6577f-3fdf-4e1a-8108-f09161ad9680
dc.contributor.institutionUniversity of Zurich
dc.date.accessioned2019-05-08T08:41:48Z
dc.date.available2019-05-08T08:41:48Z
dc.date.issued2020-02
dc.description.abstract

Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance matrix certainly will not do. In this paper, we review our work in this area, going back 15+ years. We have promoted various shrinkage estimators, which can be classified into linear and nonlinear. Linear shrinkage is simpler to understand, to derive, and to implement. But nonlinear shrinkage can deliver another level of performance improvement, especially if overlaid with stylized facts such as time-varying co-volatility or factor models.

dc.identifier.issn1664-705X
dc.identifier.othermerlin-id:18374
dc.identifier.urihttps://www.zora.uzh.ch/handle/20.500.14742/157387
dc.language.isoeng
dc.subjectDynamic conditional correlations
dc.subjectfactor models
dc.subjectlarge-dimensional asymptotics
dc.subjectMarkowitz portfolio selection
dc.subjectrotation equivariance
dc.subjectLeverage-Effekt
dc.subjectPortfolio Selection
dc.subjectLineare Schätztheorie
dc.subjectNichtlineare Schätzung
dc.subject.ddc330 Economics
dc.subject.jelC13
dc.subject.jelC58
dc.subject.jelG11
dc.title

The power of (non-)linear shrinking: a review and guide to covariance matrix estimation

dc.typeworking_paper
dcterms.accessRightsinfo:eu-repo/semantics/openAccess
dcterms.bibliographicCitation.number323
dspace.entity.typePublicationen
uzh.contributor.authorLedoit, Olivier
uzh.contributor.authorWolf, Michael
uzh.contributor.correspondenceYes
uzh.contributor.correspondenceNo
uzh.date.akaber2019
uzh.document.availabilitynone
uzh.eprint.datestamp2019-05-08 08:41:48
uzh.eprint.lastmod2024-03-06 14:30:25
uzh.eprint.statusChange2019-05-08 08:41:48
uzh.harvester.ethYes
uzh.harvester.nbNo
uzh.identifier.doi10.5167/uzh-170642
uzh.note.publicRevised version
uzh.oastatus.zoraGreen
uzh.publication.citationLedoit, Olivier; Wolf, Michael (2020). The power of (non-)linear shrinking: a review and guide to covariance matrix estimation. Working paper series / Department of Economics 323, University of Zurich.
uzh.publication.pageNumber41
uzh.publication.scopedisciplinebased
uzh.publication.seriesTitleWorking paper series / Department of Economics
uzh.relatedUrl.urlhttps://www.zora.uzh.ch/id/eprint/199147
uzh.workflow.chairSubjectoecECON1
uzh.workflow.eprintid170642
uzh.workflow.fulltextStatusrestricted
uzh.workflow.revisions29
uzh.workflow.rightsCheckoffen
uzh.workflow.statusarchive
Files

Original bundle

Name:
econwp323.pdf
Size:
546.86 KB
Format:
Adobe Portable Document Format
Name:
econwp323.pdf
Size:
468.88 KB
Format:
Adobe Portable Document Format
Publication available in collections: