Publication:

Mitigating Hallucinations and Off-target Machine Translation with Source-Contrastive and Language-Contrastive Decoding

Date

Date

Date
2024
Conference or Workshop Item
Published version
cris.lastimport.scopus2025-06-26T03:40:39Z
cris.lastimport.wos2025-07-30T01:31:30Z
cris.virtual.orcidhttps://orcid.org/0000-0002-1438-4741
cris.virtualsource.orcidac7b092b-8c4b-4590-b002-eff6c71c35d0
dc.contributor.institutionUniversity of Zurich
dc.date.accessioned2024-08-22T07:17:15Z
dc.date.available2024-08-22T07:17:15Z
dc.date.issued2024-03
dc.description.abstract

Hallucinations and off-target translation remain unsolved problems in MT, especially for low-resource languages and massively multilingual models. In this paper, we introduce two related methods to mitigate these failure cases with a modified decoding objective, without either requiring retraining or external models. In source-contrastive decoding, we search for a translation that is probable given the correct input, but improbable given a random input segment. In language-contrastive decoding, we search for a translation that is probable, but improbable given the wrong language indicator token. Experiments on the massively multilingual models M2M-100 (418M) and SMaLL-100 show that these methods suppress hallucinations and off-target translations, reducing the number of translations with segment-level chrF2 below 10 by 67-83% on average across 57 tested translation directions. In a proof of concept on out-of-English translation, we also show that we can suppress off-target translations with large language models. We release code upon acceptance.

dc.identifier.scopus2-s2.0-85189888420
dc.identifier.urihttps://www.zora.uzh.ch/handle/20.500.14742/220515
dc.identifier.wos001356733300004
dc.language.isoeng
dc.subject.ddc410 Linguistics
dc.subject.ddc000 Computer science, knowledge & systems
dc.title

Mitigating Hallucinations and Off-target Machine Translation with Source-Contrastive and Language-Contrastive Decoding

dc.typeconference_item
dcterms.accessRightsinfo:eu-repo/semantics/openAccess
dcterms.bibliographicCitation.originalpublishernameAssociation for Computational Linguistics
dcterms.bibliographicCitation.originalpublisherplaceSt. Julian's, Malta
dcterms.bibliographicCitation.pageend33
dcterms.bibliographicCitation.pagestart21
dcterms.bibliographicCitation.urlhttps://aclanthology.org/2024.eacl-short.4
dspace.entity.typePublicationen
oairecerif.event.countryMalta
oairecerif.event.endDate2024-03
oairecerif.event.placeSt. Julian’s
oairecerif.event.startDate2024-03
uzh.contributor.affiliationUniversity of Zurich, University of Edinburgh
uzh.contributor.affiliationUniversity of Zurich
uzh.contributor.affiliationUniversity of Zurich, EPFL
uzh.contributor.authorSennrich, Rico
uzh.contributor.authorVamvas, Jannis
uzh.contributor.authorMohammadshahi, Alireza
uzh.contributor.correspondenceYes
uzh.contributor.correspondenceNo
uzh.contributor.correspondenceNo
uzh.document.availabilitypublished_version
uzh.eprint.datestamp2024-08-22 07:17:15
uzh.eprint.lastmod2025-01-31 02:37:10
uzh.eprint.statusChange2024-08-22 07:17:15
uzh.event.presentationTypepaper
uzh.event.titleProceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)
uzh.event.typeconference
uzh.harvester.ethYes
uzh.harvester.nbNo
uzh.identifier.doi10.5167/uzh-261193
uzh.oastatus.zoraGreen
uzh.publication.citationSennrich, Rico; Vamvas, Jannis; Mohammadshahi, Alireza (2024). Mitigating Hallucinations and Off-target Machine Translation with Source-Contrastive and Language-Contrastive Decoding. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers), St. Julian’s, Malta, March 2024. Association for Computational Linguistics, 21-33.
uzh.publication.freeAccessAtofficialurl
uzh.publication.originalworkoriginal
uzh.publication.publishedStatusfinal
uzh.scopus.impact5
uzh.scopus.subjectsLanguage and Linguistics
uzh.scopus.subjectsLinguistics and Language
uzh.workflow.eprintid261193
uzh.workflow.fulltextStatuspublic
uzh.workflow.revisions19
uzh.workflow.rightsCheckoffen
uzh.workflow.statusarchive
uzh.wos.impact3
Files

Original bundle

Name:
2024.eacl_short.4.pdf
Size:
305.13 KB
Format:
Adobe Portable Document Format
Publication available in collections: