Publication: Functional-type a posteriori error estimates for mixed finite element methods
Functional-type a posteriori error estimates for mixed finite element methods
Date
Date
Date
Citations
Repin, S., & Smolianski, A. (2005). Functional-type a posteriori error estimates for mixed finite element methods. Russian Journal of Numerical Analysis and Mathematical Modelling, 20(4), 365–382. https://doi.org/10.1515/156939805775122271
Abstract
Abstract
Abstract
This paper concerns a posteriori error estimation for the primal and dual mixed finite element methods applied to the diffusion problem. The problem is considered in a general setting with inhomogeneous mixed Dirichlet–Neumann boundary conditions. New functional-type a posteriori error estimators are proposed that exhibit the ability both to indicate the local error distribution and to ensure upper bounds for discretization errors in primal and dual (flux) variables. The latter property is a direct consequence of the absence in the es
Metrics
Downloads
Views
Additional indexing
Creators (Authors)
Journal/Series Title
Journal/Series Title
Journal/Series Title
Volume
Volume
Volume
Number
Number
Number
Page Range
Page Range
Page Range
Page end
Page end
Page end
Item Type
Item Type
Item Type
In collections
Language
Language
Language
Publication date
Publication date
Publication date
Date available
Date available
Date available
ISSN or e-ISSN
ISSN or e-ISSN
ISSN or e-ISSN
OA Status
OA Status
OA Status
Publisher DOI
Metrics
Downloads
Views
Citations
Repin, S., & Smolianski, A. (2005). Functional-type a posteriori error estimates for mixed finite element methods. Russian Journal of Numerical Analysis and Mathematical Modelling, 20(4), 365–382. https://doi.org/10.1515/156939805775122271