Header

UZH-Logo

Maintenance Infos

Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways


Oesch-Bartlomowicz, B; Huelster, A; Wiss, O; Antoniou-Lipfert, P; Dietrich, C; Arand, Michael; Weiss, C; Bockamp, E; Oesch, F (2005). Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 102(26):9218-9223.

Abstract

Even before the first vertebrates appeared on our planet, the aryl hydrocarbon receptor (AHR) gene was present to carry out one or more critical life functions. The vertebrate AHR then evolved to take on functions of detecting and responding to certain classes of environmental toxicants. These environmental pollutants include polycyclic aromatic hydrocarbons (e.g., benzo[a]pyrene), polyhalogenated hydrocarbons, dibenzofurans, and the most potent small-molecular-weight toxicant known, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin). After binding of these ligands, the activated AHR translocates rapidly from the cytosol to the nucleus, where it forms a heterodimer with aryl hydrocarbon nuclear translocator, causing cellular responses that lead to toxicity, carcinogenesis, and teratogenesis. The nuclear form of the activated AHR/aryl hydrocarbon nuclear translocator complex is responsible for alterations in immune, endocrine, reproductive, developmental, cardiovascular, and central nervous system functions whose mechanisms remain poorly understood. Here, we show that the second messenger, cAMP (an endogenous mediator of hormones, neurotransmitters, and prostaglandins), activates the AHR, moving the receptor to the nucleus in some ways that are similar to and in other ways fundamentally different from AHR activation by dioxin. We suggest that this cAMP-mediated activation may reflect the true endogenous function of AHR; disruption of the cAMP-mediated activation by dioxin, binding chronically to the AHR for days, weeks, or months, might be pivotal in the mechanism of dioxin toxicity. Understanding this endogenous activation of the AHR by cAMP may help in developing methods to counteract the toxicity caused by numerous environmental and food-borne toxic chemicals that act via the AHR.

Abstract

Even before the first vertebrates appeared on our planet, the aryl hydrocarbon receptor (AHR) gene was present to carry out one or more critical life functions. The vertebrate AHR then evolved to take on functions of detecting and responding to certain classes of environmental toxicants. These environmental pollutants include polycyclic aromatic hydrocarbons (e.g., benzo[a]pyrene), polyhalogenated hydrocarbons, dibenzofurans, and the most potent small-molecular-weight toxicant known, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin). After binding of these ligands, the activated AHR translocates rapidly from the cytosol to the nucleus, where it forms a heterodimer with aryl hydrocarbon nuclear translocator, causing cellular responses that lead to toxicity, carcinogenesis, and teratogenesis. The nuclear form of the activated AHR/aryl hydrocarbon nuclear translocator complex is responsible for alterations in immune, endocrine, reproductive, developmental, cardiovascular, and central nervous system functions whose mechanisms remain poorly understood. Here, we show that the second messenger, cAMP (an endogenous mediator of hormones, neurotransmitters, and prostaglandins), activates the AHR, moving the receptor to the nucleus in some ways that are similar to and in other ways fundamentally different from AHR activation by dioxin. We suggest that this cAMP-mediated activation may reflect the true endogenous function of AHR; disruption of the cAMP-mediated activation by dioxin, binding chronically to the AHR for days, weeks, or months, might be pivotal in the mechanism of dioxin toxicity. Understanding this endogenous activation of the AHR by cAMP may help in developing methods to counteract the toxicity caused by numerous environmental and food-borne toxic chemicals that act via the AHR.

Statistics

Citations

Dimensions.ai Metrics
136 citations in Web of Science®
149 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 27 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Contributors:Institute of Toxicology, University of Mainz, Institute of Pharmacology and Toxicology, University of Zurich
Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:28 June 2005
Deposited On:27 Mar 2009 13:37
Last Modified:04 Oct 2023 07:12
Publisher:National Academy of Sciences
ISSN:0027-8424
Additional Information:Copyright: National Academy of Sciences USA
OA Status:Closed
Publisher DOI:https://doi.org/10.1073/pnas.0503488102
PubMed ID:15972329