Header

UZH-Logo

Maintenance Infos

The epigenome of synovial fibroblasts: an underestimated therapeutic target in rheumatoid arthritis


Frank-Bertoncelj, Mojca; Gay, Steffen (2014). The epigenome of synovial fibroblasts: an underestimated therapeutic target in rheumatoid arthritis. Arthritis Research & Therapy, 16(3):117.

Abstract

Perturbed epigenetic landscape and deregulated microRNA networks are central to the permanent activation and aggressiveness of synovial fibroblasts in rheumatoid arthritis. Current anti-cytokine therapies, although effectively halting synovitis, cannot reverse the stably activated destructive phenotype of rheumatoid arthritis synovial fibroblasts,offering rather limited protection against ongoing joint destruction in rheumatoid arthritis. Targeting the deregulated epigenome of rheumatoid arthritis synovial fibroblasts is key to developing joint-protective strategies in rheumatoid arthritis. To date, different pathogenic mechanisms have been identified that can profoundly impact the epigenetic derangements in rheumatoid arthritis synovial fibroblasts, including increased consumption of S-adenosylmethionine,a principal methyl donor in DNA methylation reactions, together with deregulation of crucial DNA- and histonemodifying enzymes. Re-establishing globally disturbed DNA methylation patterns in rheumatoid arthritis synovial fibroblasts by supplementing S-adenosylmethionine while preventing its leakage into polyamine cycles may bea promising therapeutic strategy in rheumatoid arthritis and the first epigenetic treatment to target rheumatoid arthritis synovial fibroblasts at the scene of the crime. Given the dynamic nature and reversibility of epigenetic modifications, their involvement in human diseases and recent perspectives on epigenetic therapies in cancer, epigenetic targeting of rheumatoid arthritis synovial fibroblasts should be within future reach.

Abstract

Perturbed epigenetic landscape and deregulated microRNA networks are central to the permanent activation and aggressiveness of synovial fibroblasts in rheumatoid arthritis. Current anti-cytokine therapies, although effectively halting synovitis, cannot reverse the stably activated destructive phenotype of rheumatoid arthritis synovial fibroblasts,offering rather limited protection against ongoing joint destruction in rheumatoid arthritis. Targeting the deregulated epigenome of rheumatoid arthritis synovial fibroblasts is key to developing joint-protective strategies in rheumatoid arthritis. To date, different pathogenic mechanisms have been identified that can profoundly impact the epigenetic derangements in rheumatoid arthritis synovial fibroblasts, including increased consumption of S-adenosylmethionine,a principal methyl donor in DNA methylation reactions, together with deregulation of crucial DNA- and histonemodifying enzymes. Re-establishing globally disturbed DNA methylation patterns in rheumatoid arthritis synovial fibroblasts by supplementing S-adenosylmethionine while preventing its leakage into polyamine cycles may bea promising therapeutic strategy in rheumatoid arthritis and the first epigenetic treatment to target rheumatoid arthritis synovial fibroblasts at the scene of the crime. Given the dynamic nature and reversibility of epigenetic modifications, their involvement in human diseases and recent perspectives on epigenetic therapies in cancer, epigenetic targeting of rheumatoid arthritis synovial fibroblasts should be within future reach.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

112 downloads since deposited on 18 Nov 2014
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Rheumatology
Health Sciences > Immunology and Allergy
Life Sciences > Immunology
Language:English
Date:2014
Deposited On:18 Nov 2014 15:59
Last Modified:26 Jan 2022 03:58
Publisher:BioMed Central
ISSN:1478-6354
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/ar4596
PubMed ID:25165988
  • Content: Published Version
  • Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)