
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2014

Unsupervised Text Segmentation for Automated Error Reduction

Furrer, Lenz

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-101471
Conference or Workshop Item
Accepted Version

The following work is licensed under a Creative Commons: Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
License.

Originally published at:
Furrer, Lenz (2014). Unsupervised Text Segmentation for Automated Error Reduction. In: KONVENS 2014,
Hildesheim, 8 October 2014 - 10 October 2014. Universität Hildesheim, 178-185.

Unsupervised Text Segmentation for Automated Error Reduction

Lenz Furrer
University of Zurich

Binzmühlestr. 14, CH-8050 Zürich
lenz.furrer@uzh.ch

Abstract

Challenging the assumption that traditional
whitespace/punctuation-based tokenisation
is the best solution for anyNLP application, I
propose an alternative approach to segment-
ing text into processable units. The proposed
approach is nearly knowledge-free, in that it
does not rely on language-dependent, man-
made resources. The text segmentation ap-
proach is applied to the task of automated
error reduction in texts with high noise. The
results are compared to conventional tokeni-
sation.

1 Introduction

Dividing written text into small units is one of
the most basic and fundamental steps in Natu-
ral Language Processing (NLP). Generally, this
task does not attract much attention, as it is
most often carried out by relying on a lan-
guage’s orthography for marking word bound-
aries. Whitespace/punctuation-based tokenisa-
tion – which is applicable to most mainstream lan-
guages covered in NLP literature – is not necessar-
ily the optimal starting point for every NLP appli-
cation. In this work, I investigate the use of an al-
ternative segmentation approach by applying it to
the task of automatically reducing errors in docu-
ments of amendable text quality.

The experiments reported in this work were
carried out with electronic documents created by

This work is licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Page
numbers and proceedings footer are added by the orga-
nizers. License details: http://creativecommons.
org/licenses/by/4.0/

befch ließt derRegiernngsrath:

beschließt der Regierungsrath:

a)

befch ließt derRegiernngsrath:

beschließt der Regierungsrath:

b)

Figure 1: A line of OCRed text (upper line) and its cor-
rection (lower line), segmented with traditional, whitespace-
based tokenisation (a) and with a non-standard segmentation
method (b). Note that the space character is often, but not
always, treated as a separate token in (b). The line can ap-
proximately be translated as ‘the executive council decides’.

Optical Character Recognition (OCR) software.
Modern OCR tools provide a high recognition ac-
curacy. However, it is often desirable to improve
the text quality of OCR-generated documents in
a post-processing step, especially if they are in a
challenging format such as historical books.

Most post-correction attempts operate on the
level of words, i. e. tokenised text. However,
recognition errors can lead to erroneous tokenisa-
tion if word separators are omitted or falsely in-
serted, as shown in figure 1. Segmentation er-
rors need special attention in word-based correc-
tion approaches. As illustrated in example (a),
tokenisation is misled by missing or falsely in-
serted space characters, producing disrupted and
run-on tokens which cannot be corrected by com-
paring words one by one. An attempt to exten-
sively correct segmentation errors, thus, massively
increases the search space for correcting. If, how-
ever, tokenisation was not carried out solely on the
basis of how a token is delimited, but the inter-
nal structure of a token was taken into account in-
stead, one might expect a tokenisation scheme that
is less sensitive to segmentation errors produced
by the recognition system. Example (b) shows
how amore fine-grained tokenisation can simplify

the correction procedure, in that the search space
is reduced. The resulting segments do not neces-
sarily correspond to any linguistic categories; they
might, however, help localise and fix segmenta-
tion errors. In the example given, all errors can be
addressed within the scope of a single token, no
1:n correspondences have to be considered.

2 Related Work

2.1 Automated OCR Error Correction

The field of automated OCR error correction has
gained attention over the last years, keeping up
with a growing number of large-scale digitisation
projects.1 Most of the work is concerned with
cleaning up the output of an off-the-shelf OCR
system, i. e. post-processing, although there are at-
tempts at tweaking the performance of the system
itself, such as Heliński et al. (2012). While purely
dictionary-based correction attempts for OCR er-
rors have not been very popular lately, there is still,
work on efficient dictionary lookup, designed for
the use with OCRed search terms and similar sce-
narios (Mihov and Schulz, 2004; Mihov et al.,
2007). Lund and Ringger (2009) and Volk et al.
(2010) achieve text improvements by combining
the output of multiple OCR systems, following the
idea that different recognition techniques lead to
different errors.

Corpus-based post-correction of OCR errors
has found more and more proponents in the past,
thus according with a general trend in many NLP
areas. Among other advantages, corpus-based
correction – as opposed to a dictionary-driven ap-
proach – enables exploitation of context informa-
tion, which allows for addressing real-word er-
rors, i. e. OCR misrecognitions that result in an-
other existing word (e. g. Negierung ‘negation’ in-
stead of Regierung ‘government’), as opposed to
non-word errors, which are misspelt words (e. g.
Rcgiernng). As an early example, Tong and Evans
(1996) investigate the use of a bigram language
model for correcting OCR errors. The corrections
are performed on word level, using a lexicon de-
rived from a training set of error-free texts. The

1See e. g. Holley (2009) for a large Australian newspaper
digitisation program, Jisc (http://www.jisc.ac.uk/)
for a list of ongoing projects on the British Isles, or the IM-
PACT initiative (Tumulla, 2008).

authors tackle both non-word and real-word er-
rors and report error reduction rates up to 60% for
plain alphabetic tokens. Bassil and Alwani (2012)
perform corpus-based correctionswith theGoogle
Web 1T 5-Gram Data Set. Their approach per-
forms very well on noisy OCRed text, although
the small size of the test set (less than 300 running
tokens) gives it only limited evidence. More of
a bootstrapping approach is followed by Reynaert
(2008). He pursues the idea that OCR errors are
unsystematic noise that can be filtered out without
the use of clean text.

Some work also addresses segmentation errors.
For example, Reynaert (2004) builds a corpus-
derived lexicon containing word bigrams, wich
enables a chance of correcting run-on tokens. In-
terestingly, he later states that he “do[es] not
here attempt to resolve run-ons” (Reynaert, 2006,
p. 90). Kolak et al. (2003) explicitly tackle both
kinds of segmentation errors by allowing splits in
the lexicon words and the OCR tokens.

2.2 Unsupervised Text Segmentation

Most NLP tasks operate at the level of words. The
task of splitting text into words needs some at-
tention in the case of continuous sequences, as
with speech recognition or in the case of orthogra-
phies lacking word boundaries such as Chinese,
see e. g. Chung and Gildea (2009), or when deal-
ing with phonemical transcriptions (Goldwater et
al., 2006). It is usually referred to asword segmen-
tation. In contrast to this, tokenisation is the task
of achieving the same goal for texts containing
word dividers (mostly blank spaces). Although
tokenisation seems to be quite straightforward a
task, there are still innovations in the field, like
the proposal by Barrett and Weber-Jahnke (2011),
who aim at performing tokenisation and part-of-
speech tagging simultaneously.

Tokenisation may also be difficult in the case
of untrusted input. Wrenn et al. (2007) attempt
the segmentation of texts produced by clinicians,
which have a high spelling-error rate (includ-
ing segmentation errors), causing troubles to a
standard tokeniser. The authors introduce word
boundaries using a technique borrowed from un-
supervised morphological segmentation,2 which

2See the comprehensive work by Hammarström and
Borin (2011) for an overview of the field.

Figure 2: LPV (first row) and LSV (last) counts for the word
disturbance, based on a list of dictionary entries (Harris,
1967, p. 69). The general tendency of decreasing numbers
is interrupted by “peaks” at positions with higher variabil-
ity, e. g. between disturb and ance both in left-to-right and
right-to-left reading.

was originally applied to single words and short
utterances. Wrenn et al. adapt the method to work
with running text of arbitrary length.

Golcher (2006) proposes a comprehensive ap-
proach at segmenting text in an unsupervisedman-
ner, addressing text segmentation, morphologi-
cal decomposition, multiword unit detection, and
compound analysis at the same time. He uses
a combination of different statistical measures to
segment continuous text into useful units. Unfor-
tunately, the author did not perform an extrinsic
evaluation, such as applying the segmented text
to an information retrieval or machine translation
system, bywhichmeans the advantages of the pro-
posed segmentation could have been shown.

3 Methods

In a series of experiments in this and earlier work
(Furrer, 2013), I examined the use of an alterna-
tive text segmentation scheme, as opposed to tra-
ditional tokenisation. The effects of the segmen-
tation are measured by the performance of an au-
tomated error correction system.

3.1 Text Segmentation
Before being processed by the correction module,
all text needs to be segmented into basic units.
The text segmentation method presented here in-
duces segment boundaries from the distribution
of characters. It is based on the work of Wrenn
et al. (2007) and goes back to the letter succes-
sor variety method (LSV), which was introduced
by Harris (1955) and given its name by Hafer and
Weiss (1974). The intuition behind LSV is that
morpheme boundaries can be inferred from statis-
tical properties of the characters found in a list of
words or short phrases. For a set of words that
share a common prefix x, LSV(x) is defined as
the number of distinct characters that succeed x

in these words. In figure 2, the bottom row lists

e i n e n ⎵ e i n z i g e n ⎵ F r a n k e n

...

e

i

n

⎵

i

n

n

e

z

⎵ e

n
ne

e

⎵n
⎵

ie
e

ni

3

2

2

1

1

1 1 1

1
1

1
1

11

2
1

11

1
1

1
1

1

Figure 3: Construction of a
character trie with weighted
edges from a text sequence.
7 subsequences of length 4
have already been inserted.

LSV counts for every character transition in a test
word, based on counts for all entries of an English
dictionary. For example, if a word begins with
the letter d, the second letter can be chosen from
15 possibilities, one of which is i. In all words be-
ginning with distu, the sixth position is occupied
by one of 2 distinct letters. Analogously, LSV
can be counted backwards, i. e. counting the dis-
tinct letters preceding a shared suffix (see the top
row in figure 2). This is called letter predeces-
sor variety (LPV). In order to manage continuous
text of arbitrary length, the context for comput-
ing LSV/LPV is limited to a window of k charac-
ters (Markov assumption). The windowed subse-
quences are stored in a character trie as is illus-
trated in figure 3.

During segmentation, the entire text collection
is read twice: In a learning step, the character
distribution is gathered from all texts and stored
in two character tries – one for the forward, and
one for the backward reading. Subsequently, this
global information is used to find good split points
locally. Given an input sequence s, a pair of char-
acter tries, and a minimal peak threshold, the seg-
mentation routine splits s exhaustively into ad-
jacent subsequences. Whitespace characters are
thus not removed, but retained in the segments.

For every character transition i in s, a fragility
score f is computed on the basis of LSV. The al-
gorithm aims at finding peaks in the sequence of
LSV values, i. e. values that are greater than their
immediate neighbours. If there is a peak at transi-
tion i, then the LSV drop to both its neighbours is
summed:

fs(i) =

∆<
s (i) + ∆>

s (i)
if ∆<

s (i) > 0 ∧∆>
s (i) > 0

0 otherwise
(1)

where∆< and∆> are the increasing and decreas-
ing side of the peak, respectively. For a character
window of length k, the definitions of∆< and∆>

e r R e

b e s c h l i e ß t ⎵ d e r R e g i e r u n g s r a t h :

d

∆<
LSV(der) – LSV(derR)

i = 1 2 3 …

∆>

∆>

∆<

Figure 4: Illustration of a segmentation example.

are narrowed down to the following:

∆<
s,k(i) = LSV(sii−k+2)− LSV(si−1

i−k+2
)

∆>
s,k(i) = LSV(sii−k+3)− LSV(si+1

i−k+3
)

(2)

By looking separately at each side of i, ∆<

and ∆> capture a maximum of context each.
For example, with a window size k = 5 and
s = beschließt derRegierungsrath :,
∆<

s (i = 14) is calculated using the following sub-
sequences (see also figure 4):

∆<
s,5(14) = LSV(der)− LSV(de)

∆>
s,5(14) = LSV(der)− LSV(derR)

(3)

Analogously, the fragility score is computed for
the backward reading of s. If the summed scores
at transition i reach or exceed the peak threshold,
a segment boundary is inserted. Figure 5 shows
an example of segmented text.

3.2 Error Correction
I modelled the automated error correction frame-
work closely after the Hidden Markov Model
(HMM) proposed by Tong and Evans (1996),
which is theoretically well founded and easily
adaptable to new data. By realising the digitisa-
tion chain as a Markov model, one assumes that
the original text can be cleaned from the transmis-
sion noise by means of statistical properties.

In the experiments by Tong and Evans, these
properties are estimated from a collection of clean
texts. The observations are the output produced
by the OCR system, cut into processable units
(henceforth segments) in the preceding segmenta-
tion routine. The hidden states are the correct seg-
ments that have to be predicted by the correction
system. The correction is performed by finding
the best path through all possible hidden states,
which is done with the Viterbi algorithm.

An important thing to note is that the distinction
between error detection and error correction is ab-
sent from this approach. In a HMM, correcting a
text segment means predicting a hidden label that
looks different from the observed token; not cor-
recting – which is the most frequent operation –

Hier ward mir zum ersten Male die Möglichkeit klar,

den Koloss von Südwesten zu bezwingen. Mit dem Fernrohr

untersuchte ich die östlichen Wände des Aletschhorns

Figure 5: Example of segmented text. Segment boundaries
are indicated by change of shading. The character distribu-
tion properties were learnt with a window size of 5 and the
segmentations were carried out with a peak threshold of 10.

means predicting a label that happens to equal the
observation. This behaviour is controlled by the
emission probability.

The best sequence of correct segments W best

is determined by the conditional probability
P (W |O). Using Bayes’ theorem, this is equiv-
alent to:

W
best = argmax

W

(P (W)× P (O|W)) (4)

P (W) and P (O|W) are the products of the
transition and emission probabilities, respectively,
for a sequence of observations O and all pos-
sible correction sequences W . P (W) is esti-
mated with a statistical language model using the
tool KenLM (Heafield, 2011), which implements
modified Kneser-Ney smoothing (Kneser and Ney,
1995; Chen and Goodman, 1998). The language
model was trained on a normalised version of
the text collection.3 P (O|W) is estimated from
the frequencies of observed human corrections
by maximum likelihood estmation (MLE). It ex-
presses the distribution of noise that has been in-
troduced by the OCR process. In order to reduce
the search space for potential corrections, I used
simstring (Okazaki and Tsujii, 2010) for fast
retrieval of candidate segments with aminimal co-
sine similarity of 0.6.

The probability of an OCRed segment o being
produced from a true segment w is based on the
minimum edit distance between the two segments.
This means that the cost of transforming w into o
is described in terms of edit operations, i. e. insert-
ing, deleting, or substituting a character. By find-
ing the minimal set of edit operations, the charac-
ters of w and o are aligned. Based on the confu-
sion probability of each character alignment pair,
P (o|w) can be estimated:

P (o|w) =
∏

i,j∈Aw,o

Pconf(oi|wj) (5)

3All letters were converted to lower-case and sequences
of digits were replaced by ‘0’. Please note that this normali-
sation is only applied when estimating and querying the tran-
sition probability, but not for the emission probability.

where o1, . . . , on and w1, . . . , wm are the charac-
ters in o and w, respectively, A ⊆ {0, . . . , n} ×
{0, . . . ,m} is the set of alignments between o
and w, and Pconf(x|y) is the confusion probabil-
ity of the aligned characters x and y, estimated
with MLE. In order to account for unseen char-
acter pairs, the estimations are smoothed with a
discount factor α in the range [0, 1]. If there is no
empirical estimation for a character pair oi, wj , the
following back-off model is applied:

Pbackoff(oi|wj) =

{

α if oi = wj
1−α
|A|−1

otherwise (6)

where |A| is the size of the training data alphabet.

4 Evaluation

In the present work, the outcome of “unorthodox”
text segmentation is investigated by measuring its
impact on a subsequent NLP application, namely
the automatic correction of OCR errors. In an ex-
trinsic evaluation like this, the usefulness of the
intermediate step – the segmented text – is only
determined by the improvements of the complete
system. It does not matter if the resulting seg-
ments do or do not agree with human annotations,
correlate with usual tokenisation, or correspond to
linguistically approved entities.

For the present experiments, I worked with
a collection of alpine texts from the 19th cen-
tury. The text collection consists of 35 volumes
of the yearly publications of the Swiss Alpine
Club. The books were digitised using OCR in the
Text+Berg digital project,4 located at the Univer-
sity of Zurich. Most of the texts are written in Ger-
man (approximately 90% of the sentences) and
French (10%), with some portions in English and
Italian (0.1% each). Theywere published between
1864 and 1899 and sum up to a total of more than
21 000 pages with approximately 560 000 word to-
kens. The text quality in terms of OCR accuracy is
acceptable, but far from perfect. TheOCR process
was challenged by many factors, such as historical
spelling, a high rate of special vocabulary (place
names, scientific terms, regional language varia-
tions), mixed paper quality, and complex layout
(tables, equations).

The text versions used in this work are taken
from an offspring project called SAC-Kokos,5

which runs an online platform for publishing and
4http://textberg.ch/
5http://kokos.cl.uzh.ch/

improving the OCRed texts. The project is built
on the idea of crowd-sourcing: users may read the
texts online and edit them in an easy click-and-
type manner whenever an error is encountered.
Over the last months, the text quality has been
considerably improved by enthusiasts who read
through the texts and correct OCR errors.

Throughout the experiments, I used two snap-
shots of the text collection: one taken at an early
stage of the project, when the texts still were close
to the raw output of the OCR process (hence-
forth “oldest”), and a very recent one, reflecting
many improvements by human editing (“newest”).
These two versions of the same text collection are
used to measure how well the correction system is
able to imitate human text correction.

4.1 Evaluation Setup

For creating a test set, I collected a subset of pages
with a minimal length of 100 words. I further
excluded pages with a character edit ratio below
0.2% or above 2%, as it is very likely that pages
with a very low change rate have not been thor-
oughly reviewed yet, while pages with too many
edits probably reflect problems outside the reach
of an automated correction attempt, such as rear-
rangements of longer text parts. From this subset,
which comprises about 60% of all pages, I sam-
pled 1000 pages as a test set, and another 1000
pages as a tuning set. The remainder of the (unfil-
tered) collection was used for training.

The evaluation setup is modelled towards a re-
alistic scenario, where a collection of noisy texts
is available, but only a limited amount of clean
data. Thus, I used the oldest version of the data for
training the transition probabilities of the correc-
tion HMM. The emission probabilities were esti-
mated from the differences in the newest and old-
est versions of the tuning set pages.

Both training and test data were segmented with
the described method. Based on experience with
prior experiments, I set the character-trie window
and the peak threshold to values of 5 and 10, re-
spectively. Additionally, I ran a separate instance
of this experiment with tokenised data, created
with a simple regular-expression based tokeniser.
For each of the two instances, I carried out mul-
tiple runs by varying the value of the discounting
parameter α, which affects the emission probabil-

segmented tokenised
α = .97 α = .9 α = .97 α = .9

∆E -16 -12 -11 -12
mod. 30 35 13 15
TP 23 23.5 12 13.5
FP 7 11.5 1 1.5

Prec. 76.67% 67.14% 92.31% 90.00%
Rec. 0.21% 0.21% 0.11% 0.12%

Table 1: Error reduction for segmented and tokenised data.

ity of the HMM.
After estimating the HMM weights from the

training data, the correction system processed the
oldest version of the test data. Using the ISRI
OCR-Evaluation Frontiers Toolkit (Rice, 1996), I
measured the OCR quality before and after apply-
ing the corrections, by assuming that the newest
test data version is a reasonable approximation of
ground truth data.

4.2 Results
Evaluation results are given in table 1. Each col-
umn represents a different experimental config-
uration. The first row (∆E) shows the respec-
tive error reduction rate (in characters). The to-
tal number of modifications made by the system
is given in the second row (number of modified
segments/tokens, but usually only one character
is affected). The following rows give figures for
true and false positives (TP, FP) as well as preci-
sion and recall. A modification by the system was
counted as TP if it reduced the error rate, but as
FP if it performed an over-correction (i. e. intro-
duced a new error, at least from the perspective
of the newest data). In some cases, the system
spotted an error correctly, but failed at correcting
it (e. g. when deleting a misrecognised character
rather than replacing it), which is a neutral mod-
ification with respect to the error rate; I counted
these cases as half TP, half FP. The recall figures
are based on the total number of character errors
in the test set, which is 11 100.

5 Discussion

All systems show a moderate error reduction.
However, the 60.2% error reduction reported by
Tong and Evans (1996, p. 96) cannot be repro-
duced, for the systems are very conservative (one

would like to say “shy”). The reason for the low re-
call seems not to lie in the non-standard segmenta-
tion, since the tokenisation-based systems are just
as cautious. Rather, it seems that the correction
model does not adapt well to the present-day re-
quirements of error correction. In fact, one of the
key differences between the same task in the 1990s
and in the 2010s is the initial accuracy of the noisy
documents: While the overall word-error rate in
Tong and Evans’ texts is 22.9%, it is as low as
1.7% in my test data.6 This means that the task of
finding these well-hidden errors is now harder by
an order of magnitude.

Comparing the results of the different systems,
the segmentation-based approach generates more
TP and leads to a greater error reduction, while
tokenisation yields a higher precision. The effect
of the discounting factor α is small. It seems to
make the systems slightly more audacious when
reduced (which givesmore probabilitymass to un-
seen character substitutions); this comes at a cost
in precision, however.

A qualitative analysis of the data by inspect-
ing the performed modifications exemplifies the
advantages of the unsupervised segmentation ap-
proach. Besides generally good corrections like
Glär-nisch → Glärnisch (a mountain) or HUtten
→ Hütten (‘huts’), which could also be detected
in a word-based correction attempt, there are cases
that clearly profit from the non-standard segmen-
tation. The French phrase II y a → Il y a (‘there
is’) and the spaced abbreviation 8. A. C. → S.
A. C. were each treated as a single segment and
could be safely corrected, while the single tokens
II and 8. are not that easily identified as errors.
Furthermore, tobeis→ tobels corrects the last part
of the compound place nameWelschtobel (in gen-
itive case), which is presumably supported by oc-
currences of this segment in different compounds.

While the overall performance of the presented
error reduction system is not overwhelming, the
unsupervised segmentation scheme is able to ad-
dress certain kinds of errors that are harder to
find by word-based correction systems. In future
work, I intend to test the unsupervised segmen-
tation with a more sophisticated correction algo-
rithm.

6Measured by the newest data, which might be too low an
estimate, since there might still be uncorrected errors.

References
Neil Barrett and JensH.Weber-Jahnke. 2011. Building

a biomedical tokenizer using the token lattice design
pattern and the adapted Viterbi algorithm. BMC
Bioinformatics, 12(S-3).

Youssef Bassil and Mohammad Alwani. 2012. OCR
context-sensitive error correction based on Google
Web 1T 5-Gram data set. American Journal of Sci-
entific Research, 50(50), February.

Stanley F. Chen and Joshua T. Goodman. 1998. An
empirical study of smoothing techniques for lan-
guage modeling. Technical report tr-10-98, Harvard
University.

Tagyoung Chung and Daniel Gildea. 2009. Unsuper-
vised tokenization for machine translation. In Pro-
ceedings of the 2009 Conference on EmpiricalMeth-
ods in Natural Language Processing, EMNLP ’09,
page 718–726. ACL.

Lenz Furrer. 2013. Unsupervised text segmentation
for correcting OCR errors. Master’s thesis, Univer-
sity of Zurich.

Felix Golcher. 2006. Statistical text segmentation
with partial structure analysis. In Proceedings of
KONVENS, page 44–51.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2006. Contextual dependencies in un-
supervised word segmentation. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics, ACL ’06, page 673–680.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word
segmentation by letter successor varieties. Informa-
tion Storage and Retrieval, 10(11-12):371–385.

Harald Hammarström and Lars Borin. 2011. Unsuper-
vised learning of morphology. Computational Lin-
guistics, 37(2):309–350.

Zellig S. Harris. 1955. From phoneme to morpheme.
Language, 31(2):190–222.

Zellig S. Harris. 1967. Morpheme boundaries within
words: Report on a computer test. In Transforma-
tions and Discourse Analysis Papers, page 68–77.
Department of Linguistics, University of Pennsylva-
nia.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, Ed-
inburgh, UK, July. Association for Computational
Linguistics.

Marcin Heliński, Miłosz Kmieciak, and Tomasz
Parkoła. 2012. Report on the comparison of Tesser-
act and ABBYY FineReader OCR engines. Techni-
cal report, Poznań Supercomputing and Networking
Center (PCSS), Poznań.

Rose Holley. 2009. How good can it get? analysing
and improving OCR accuracy in large scale historic

newspaper digitisation programs. D-Lib Magazine,
15(3/4).

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, volume I,
page 181–184, Detroit, Michigan, May.

Okan Kolak, William Byrne, and Philip Resnik. 2003.
A generative probabilistic OCR model for NLP ap-
plications. In Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology, volume 1 of NAACL ’03, page 55–62,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

William B. Lund and Eric K. Ringger. 2009. Im-
proving optical character recognition through effi-
cient multiple system alignment. In Proceedings of
the 9th ACM/IEEE-CS joint conference on Digital
libraries, JCDL ’09, page 231–240, New York, NY,
USA.

Stoyan Mihov and Klaus U. Schulz. 2004. Fast ap-
proximate search in large dictionaries. Computa-
tional Linguistics, 30:451–477.

Stoyan Mihov, Petar Mitankin, Annette Gotscharek,
Ulrich Reffle, Klaus U. Schulz, and Christoph
Ringlstetter. 2007. Tuning the selection of correc-
tion candidates for garbled tokens using error dic-
tionaries. In Finite State Techniques and Approx-
imate Search: Proceedings of the First Workshop
on Finite-State Techniques and Approximate Search,
page 25–30, Borovets, Bulgaria.

Naoaki Okazaki and Jun’ichi Tsujii. 2010. Sim-
ple and efficient algorithm for approximate dictio-
nary matching. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
COLING ’10, page 851–859, Beijing, China, Au-
gust.

Martin Reynaert. 2004. Text induced spelling cor-
rection. In Proceedings of the 20th International
Conference on Computational Linguistics, COL-
ING ’04, page 834–840, Geneva, Switzerland, Aug
23–Aug 27. ICCL.

Martin Reynaert. 2006. Corpus-induced corpus clean-
up. In Proceedings of the 5th International Confer-
ence on Language Resources and Evaluation, LREC
2006, page 87–92. European Language Resources
Association (ELRA).

Martin Reynaert. 2008. Non-interactive OCR post-
correction for giga-scale digitization projects. In
Proceedings of the 9th International Conference on
Computational Linguistics and Intelligent text pro-
cessing, CICLing’08, page 617–630, Berlin, Heidel-
berg. Springer-Verlag.

Stephen V. Rice. 1996. Measuring the Accuracy of
Page-Reading Systems. Ph.D. thesis, University of
Nevada, Las Vegas.

Xian Tong and David A. Evans. 1996. A statistical
approach to automatic OCR error correction in con-
text. InProceedings of the FourthWorkshop on Very
Large Corpora, WVLC-4, page 88–100.

Martina Tumulla. 2008. IMPACT: Improving access
to text. Dialog mit Bibliotheken, 20(2):39–41, July.
(German article).

Martin Volk, Torsten Marek, and Rico Sennrich. 2010.
Reducing OCR errors by combining two OCR sys-
tems. In ECAI 2010 Workshop on Language Tech-
nology for Cultural Heritage, Social Sciences, and
Humanities, LaTeCH 2010, page 61–65, August.

Jesse O.Wrenn, Peter D. Stetson, and Stephen B. John-
son. 2007. An unsupervised machine learning ap-
proach to segmentation of clinician-entered free text.
In Proceedings of the AMIA 2007 Annual Sympo-
sium, page 811–815.

