Header

UZH-Logo

Maintenance Infos

Viral infections in mice with reconstituted human immune system components


Münz, Christian (2014). Viral infections in mice with reconstituted human immune system components. Immunology Letters, 161(1):118-124.

Abstract

Pathogenic viruses are often difficult to study due to their exclusive tropism for humans. The development of mice with human immune system components opens the possibility to study those human pathogens with a tropism for the human hematopoietic lineage in vivo. These include HCMV, EBV, KSHV, HIV, HTLV-1, dengue virus and JC virus. Furthermore, some human pathogens, like HSV-2, adenovirus, HCV, HBV and influenza A virus, with an additional tropism for somatic mouse tissues or for additional transplanted human tissues, mainly liver, have been explored in these models. The cellular tropism of these viruses, their associated diseases and primarily cell-mediated immune responses to these viral infections will be discussed in this review. Already some exciting information has been gained from these novel chimeric in vivo models and future avenues to gain more insights into the pathology, but also potential therapies, will be outlined. Although the respective in vivo models of human immune responses can still be significantly improved, they already provide preclinical systems for in vivo studies of important viral pathogens of humans.

Abstract

Pathogenic viruses are often difficult to study due to their exclusive tropism for humans. The development of mice with human immune system components opens the possibility to study those human pathogens with a tropism for the human hematopoietic lineage in vivo. These include HCMV, EBV, KSHV, HIV, HTLV-1, dengue virus and JC virus. Furthermore, some human pathogens, like HSV-2, adenovirus, HCV, HBV and influenza A virus, with an additional tropism for somatic mouse tissues or for additional transplanted human tissues, mainly liver, have been explored in these models. The cellular tropism of these viruses, their associated diseases and primarily cell-mediated immune responses to these viral infections will be discussed in this review. Already some exciting information has been gained from these novel chimeric in vivo models and future avenues to gain more insights into the pathology, but also potential therapies, will be outlined. Although the respective in vivo models of human immune responses can still be significantly improved, they already provide preclinical systems for in vivo studies of important viral pathogens of humans.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

234 downloads since deposited on 09 Dec 2014
37 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Immunology and Allergy
Life Sciences > Immunology
Language:English
Date:September 2014
Deposited On:09 Dec 2014 16:04
Last Modified:26 Jan 2022 04:11
Publisher:Elsevier
ISSN:0165-2478
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.imlet.2014.05.012
PubMed ID:24953718
  • Content: Accepted Version