Abstract
Dicarboxystilbene, a molecule that becomes chiral in the adsorbed state through the loss of its improper axis of rotation, forms long-range "handed" structures when adsorbed on Cu(110) as revealed by scanning tunnelling microscopy. We show that these structures are created from chiral "adsorption complex" building blocks, giving rise to a complete set of racemic and enantiomerically pure structural assemblies. We interpret the formation of these structures in terms of a balance between hydrogen bond mediated intermolecular interactions and the adsorbate-surface structural relationship and discuss the reasons for temperature-induced conversion from the metastable enantiomerically pure to the racemic structure.