Abstract
We study Jack characters, which are the coefficients of the power-sum expansion of Jack symmetric functions with a suitable normalization. These quantities have been introduced by Lassalle who formulated some challenging conjectures about them. We conjecture the existence of a weight on non-oriented maps (i.e., graphs drawn on non-oriented surfaces) which allows to express any given Jack character as a weighted sum of some simple functions indexed by maps. We provide a candidate for this weight which gives a positive answer to our conjecture in some, but unfortunately not all, cases. In particular, it gives a positive answer for Jack characters specialized to Young diagrams of rectangular shape. This candidate weight attempts to measure, in a sense, the non-orientability of a given map.